找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Security Practice and Experience; 11th International C Javier Lopez,Yongdong Wu Conference proceedings 2015 Springer Internatio

[復(fù)制鏈接]
樓主: APL
31#
發(fā)表于 2025-3-26 22:38:04 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:19 | 只看該作者
33#
發(fā)表于 2025-3-27 05:39:14 | 只看該作者
Fault Attacks on Stream Cipher Scream key attacks, we can retrieve the key with 2. computations and 2. bytes memory. The result is verified by experiments. To the best of the our knowledge this is the first DFA and key recovery attack on Scream.
34#
發(fā)表于 2025-3-27 11:31:59 | 只看該作者
35#
發(fā)表于 2025-3-27 17:16:37 | 只看該作者
Partial Prime Factor Exposure Attacks on RSA and Its Takagi’s VariantBs) or least significant bits of . are exposed. Compared with previous results, our theoretical analysis and experimental results show a substantial improvement in reducing the number of known bits of the private key to factor ..
36#
發(fā)表于 2025-3-27 20:57:04 | 只看該作者
37#
發(fā)表于 2025-3-28 00:04:13 | 只看該作者
0302-9743 and Experience, ISPEC 2015, held in Beijing China, in May 2015. .The 38 papers presented in this volume were carefully reviewed and selected from 117 submissions. The regular papers are organized in topical sections named: system security, stream cipher, analysis, key exchange protocol, elliptic cu
38#
發(fā)表于 2025-3-28 04:58:28 | 只看該作者
Models of Curves from GHS Attack in Odd Characteristiccomputed. In this paper, we show that his method works without that condition. We also give explicit map from the covering to the original curve if the covering is hyperelliptic. Our method is based on a formula for the embedding of rational subfield of the function field of (hyper)elliptic curve in that of the hyperelliptic covering.
39#
發(fā)表于 2025-3-28 08:11:46 | 只看該作者
Some Elliptic Subcovers of Genus 3 Hyperelliptic Curvesrves of genus 3. In this paper, we study the properties of elliptic subcovers of genus 3 hyperelliptic curves. Using these properties, we find some minimal elliptic subcovers of degree 4, which can not be constructed by GHS attack.
40#
發(fā)表于 2025-3-28 14:21:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 平潭县| 如东县| 东海县| 苗栗市| 临西县| 鄂伦春自治旗| 蒙城县| 鄱阳县| 田东县| 富民县| 洛隆县| 兰州市| 南郑县| 枝江市| 闸北区| 通海县| 卫辉市| 安丘市| 四会市| 宁海县| 鄂州市| 张北县| 加查县| 桦南县| 城口县| 阜平县| 中牟县| 县级市| 康保县| 宜春市| 安岳县| 黄骅市| 桐城市| 许昌市| 綦江县| 上虞市| 瑞金市| 济阳县| 诏安县| 金门县|