找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Processing in Medical Imaging; 27th International C Aasa Feragen,Stefan Sommer,Mads Nielsen Conference proceedings 2021 Springe

[復制鏈接]
樓主: microbe
41#
發(fā)表于 2025-3-28 16:50:58 | 只看該作者
42#
發(fā)表于 2025-3-28 20:52:36 | 只看該作者
Deep Learning Based Geometric Registration for Medical Images: How Accurate Can We Get Without Visualoopy belief message passing to enable highly accurate 3D point cloud registration. Our experimental validation is conducted on complex key-point graphs of inner lung structures, strongly outperforming dense encoder-decoder networks and other point set registration methods. Our code is publicly avai
43#
發(fā)表于 2025-3-28 23:48:21 | 只看該作者
44#
發(fā)表于 2025-3-29 06:12:08 | 只看該作者
Multiple-Shooting Adjoint Method for Whole-Brain Dynamic Causal Modelings, and is suitable for large-scale systems such as whole-brain analysis in functional MRI (fMRI). Furthermore, MSA uses the adjoint method for accurate gradient estimation in the ODE; since the adjoint method is generic, MSA is a generic method for both linear and non-linear systems, and does not re
45#
發(fā)表于 2025-3-29 07:27:49 | 只看該作者
46#
發(fā)表于 2025-3-29 14:20:09 | 只看該作者
Enabling Data Diversity: Efficient Automatic Augmentation via Regularized Adversarial Trainingrated that our approach, with less training overhead, achieves superior performance over state-of-the-art auto-augmentation methods on both tasks of 2D skin cancer classification and 3D organs-at-risk segmentation.
47#
發(fā)表于 2025-3-29 17:12:02 | 只看該作者
Blind Stain Separation Using Model-Aware Generative Learning and Its Applications on Fluorescence Mir more, a training algorithm is innovated for the proposed framework to avoid inter-generator confusion during learning. This paper particularly takes fluorescence unmixing in fluorescence microscopy images as an application example of the proposed framework. Qualitative and quantitative experimenta
48#
發(fā)表于 2025-3-29 20:12:07 | 只看該作者
MR Slice Profile Estimation by Learning to Match Internal Patch Distributionsy, the slice selection profile can be learned without any external data. Our algorithm was tested using simulations from isotropic MR images, incorporated in a through-plane super-resolution algorithm to demonstrate its benefits, and also used as a tool to measure image resolution. Our code is at ..
49#
發(fā)表于 2025-3-30 02:42:14 | 只看該作者
50#
發(fā)表于 2025-3-30 06:47:02 | 只看該作者
Hierarchical Morphology-Guided Tooth Instance Segmentation from CBCT Imagesary tasks. Extensive evaluations, ablation studies, and comparisons with existing methods show that our approach achieved state-of-the-art segmentation performance, especially around the challenging dental parts (i.e., tooth roots and boundaries). These results suggest the potential applicability of
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宝坻区| 包头市| 仙居县| 栖霞市| 三台县| 宕昌县| 巩义市| 班玛县| 都匀市| 花莲县| 保德县| 民权县| 华阴市| 阳东县| 昆山市| 卢湾区| 望奎县| 满洲里市| 铁岭市| 富蕴县| 沭阳县| 湘乡市| 皮山县| 奉化市| 登封市| 益阳市| 修文县| 南陵县| 漯河市| 新密市| 鹤山市| 来宾市| 革吉县| 会宁县| 芜湖县| 尖扎县| 长兴县| 鄂伦春自治旗| 商都县| 罗源县| 晴隆县|