找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Fusion; Machine Learning Met Jinxing Li,Bob Zhang,David Zhang Book 2022 Springer Nature Singapore Pte Ltd. & Higher Education P

[復(fù)制鏈接]
查看: 35694|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:45:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Information Fusion
副標(biāo)題Machine Learning Met
編輯Jinxing Li,Bob Zhang,David Zhang
視頻videohttp://file.papertrans.cn/466/465038/465038.mp4
概述Reviews state-of-the-art techniques for information fusion.Presents typical applications of information fusion, ranging from low-level to high-level tasks.Demonstrates the benefits of applying advance
圖書封面Titlebook: Information Fusion; Machine Learning Met Jinxing Li,Bob Zhang,David Zhang Book 2022 Springer Nature Singapore Pte Ltd. & Higher Education P
描述.In the big data era, increasing?information?can be extracted from the same source object or scene. For instance, a person can be verified based on their fingerprint, palm print, or iris information, and a given image can be represented by various types of features, including its texture, color, shape, etc. These multiple types of data extracted from a single object are called multi-view, multi-modal or multi-feature data. Many works have demonstrated that the utilization of all available?information?at multiple abstraction levels (measurements, features, decisions) helps to obtain more complex, reliable and accurate?information and to maximize performance in a range of applications..This book provides an overview of information fusion technologies, state-of-the-art techniques and their applications. It covers a variety of essential information fusion methods based on different techniques, including sparse/collaborative representation, kernel strategy,Bayesian models, metric learning, weight/classifier methods, and deep learning. The typical applications of these proposed fusion approaches are also presented, including image classification, domain adaptation, disease detection, ima
出版日期Book 2022
關(guān)鍵詞Information Fusion; Data Fusion; Multi-view data; Multi-modal data; Multi-feature data; Multi-view Learni
版次1
doihttps://doi.org/10.1007/978-981-16-8976-5
isbn_softcover978-981-16-8978-9
isbn_ebook978-981-16-8976-5
copyrightSpringer Nature Singapore Pte Ltd. & Higher Education Press, China 2022
The information of publication is updating

書目名稱Information Fusion影響因子(影響力)




書目名稱Information Fusion影響因子(影響力)學(xué)科排名




書目名稱Information Fusion網(wǎng)絡(luò)公開(kāi)度




書目名稱Information Fusion網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Information Fusion被引頻次




書目名稱Information Fusion被引頻次學(xué)科排名




書目名稱Information Fusion年度引用




書目名稱Information Fusion年度引用學(xué)科排名




書目名稱Information Fusion讀者反饋




書目名稱Information Fusion讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:32:29 | 只看該作者
地板
發(fā)表于 2025-3-22 06:31:04 | 只看該作者
5#
發(fā)表于 2025-3-22 11:23:29 | 只看該作者
Information Fusion Based on Deep Learning,er architectures to more powerfully model the complex distributions of the real-world datasets. This chapter proposes two deep learning based fusion methods that can fuse two branches of networks into a unique feature. After reading this chapter people can have preliminary knowledge on deep learning based fusion methods.
6#
發(fā)表于 2025-3-22 13:34:02 | 只看該作者
Jinxing Li,Bob Zhang,David ZhangReviews state-of-the-art techniques for information fusion.Presents typical applications of information fusion, ranging from low-level to high-level tasks.Demonstrates the benefits of applying advance
7#
發(fā)表于 2025-3-22 19:22:45 | 只看該作者
http://image.papertrans.cn/i/image/465038.jpg
8#
發(fā)表于 2025-3-23 00:50:02 | 只看該作者
978-981-16-8978-9Springer Nature Singapore Pte Ltd. & Higher Education Press, China 2022
9#
發(fā)表于 2025-3-23 02:13:01 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:39 | 只看該作者
learning, weight/classifier methods, and deep learning. The typical applications of these proposed fusion approaches are also presented, including image classification, domain adaptation, disease detection, ima978-981-16-8978-9978-981-16-8976-5
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 15:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景洪市| 依安县| 肃南| 博乐市| 辛集市| 长顺县| 济源市| 包头市| 滁州市| 秦皇岛市| 枞阳县| 桐乡市| 社会| 子洲县| 光泽县| 许昌县| 布尔津县| 平顺县| 乐山市| 鹿泉市| 虎林市| 汨罗市| 旬阳县| 拜泉县| 土默特左旗| 什邡市| 辽阳市| 建瓯市| 长汀县| 嵊泗县| 忻州市| 桑植县| 绵竹市| 兴义市| 广元市| 阳谷县| 绥宁县| 台前县| 句容市| 德兴市| 云浮市|