找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinity Properads and Infinity Wheeled Properads; Philip Hackney,Marcy Robertson,Donald Yau Book 2015 Springer International Publishing S

[復(fù)制鏈接]
樓主: Jejunum
41#
發(fā)表于 2025-3-28 16:55:55 | 只看該作者
0075-8434 natorics of graphs and graphs substitution.Analyses technica.The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads and enable one to encode bialgebraic, rather th
42#
發(fā)表于 2025-3-28 20:28:14 | 只看該作者
Graphse develop graph theoretical concepts that will be needed later to define coface and codegeneracy maps in the graphical categories for connected (wheeled-free) graphs. We give graph substitution characterization of each of these concepts.
43#
發(fā)表于 2025-3-29 02:04:16 | 只看該作者
Wheeled Properads and Graphical Wheeled Properadsare infinite. In the rest of this chapter, we discuss wheeled versions of coface maps, codegeneracy maps, and graphical maps, which are used to define the wheeled properadic graphical category .. Every wheeled properadic graphical map has a decomposition into codegeneracy maps followed by coface maps.
44#
發(fā)表于 2025-3-29 05:44:16 | 只看該作者
Introduction,ndamental properad of an .-properad is characterized in terms of homotopy classes of 1-dimensional elements. Using all connected graphs instead of connected wheel-free graphs, a parallel theory of .-wheeled properads is also developed.
45#
發(fā)表于 2025-3-29 10:26:49 | 只看該作者
Properadic Graphical Categorys do not exist for general properad maps between graphical properads. Finally, we show that the properadic graphical category admits the structure of a (dualizable) generalized Reedy category, in the sense of Berger and Moerdijk (Math. Z. .(3–4), 977–1004, 2011).
46#
發(fā)表于 2025-3-29 13:20:42 | 只看該作者
47#
發(fā)表于 2025-3-29 15:34:12 | 只看該作者
Symmetric Monoidal Closed Structure on Properadsn of the tensor product of two free properads in terms of the two generating sets. In particular, when the free properads are finitely generated, their tensor product is finitely presented. This is not immediately obvious from the definition because free properads are often infinite sets.
48#
發(fā)表于 2025-3-29 20:23:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
维西| 陇南市| 安国市| 项城市| 灵山县| 隆子县| 林西县| 浦县| 科技| 杭州市| 裕民县| 大连市| 贵定县| 汉阴县| 丰宁| 布拖县| 贺兰县| 新昌县| 铜陵市| 光山县| 芜湖县| 佛学| 独山县| 桓台县| 平顶山市| 江西省| 磴口县| 泽普县| 龙里县| 深州市| 康乐县| 合肥市| 九寨沟县| 胶州市| 台东县| 庆元县| 米林县| 科技| 寿阳县| 辉县市| 日土县|