找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields; An Introduction to A Asao Arai Book 2022 The Editor(s) (if applicab

[復制鏈接]
查看: 24535|回復: 36
樓主
發(fā)表于 2025-3-21 16:12:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields
副標題An Introduction to A
編輯Asao Arai
視頻videohttp://file.papertrans.cn/465/464645/464645.mp4
概述Provides an introductory description of the theory of mathematical supersymmetric quantum field theory.Clarifies general mathematical structures that some supersymmetric quantum field models have in c
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields; An Introduction to A Asao Arai Book 2022 The Editor(s) (if applicab
描述This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson–Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson–Fermion Fock space serves this purpose. The analysis developed i
出版日期Book 2022
關鍵詞Boson-Fermion Fock space; infinite dimensional Dirac operator; infinite dimensional Laplacian; supersym
版次1
doihttps://doi.org/10.1007/978-981-19-5678-2
isbn_softcover978-981-19-5677-5
isbn_ebook978-981-19-5678-2Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields影響因子(影響力)




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields影響因子(影響力)學科排名




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields網(wǎng)絡公開度




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields網(wǎng)絡公開度學科排名




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields被引頻次




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields被引頻次學科排名




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields年度引用




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields年度引用學科排名




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields讀者反饋




書目名稱Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:54:14 | 只看該作者
Elements of the Theory of Fock Spaces,We review the theory of Fock spaces within the scope of the following chapters (for more details, see [22]).
板凳
發(fā)表于 2025-3-22 03:08:21 | 只看該作者
-space Representation of Boson Fock Space,We review the so-called .-space representation (a probability theoretical representation) of the boson Fock space over a Hilbert space. This representation is useful in analyzing quantum field models (e.g., [20, 34, 38, 61, 62]) and has important relations to infinite-dimensional stochastic analysis (e.g., [38, 51]).
地板
發(fā)表于 2025-3-22 08:30:27 | 只看該作者
5#
發(fā)表于 2025-3-22 09:40:26 | 只看該作者
6#
發(fā)表于 2025-3-22 13:06:47 | 只看該作者
7#
發(fā)表于 2025-3-22 18:15:16 | 只看該作者
8#
發(fā)表于 2025-3-23 00:54:20 | 只看該作者
9#
發(fā)表于 2025-3-23 04:08:22 | 只看該作者
978-981-19-5677-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
10#
發(fā)表于 2025-3-23 06:41:50 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 10:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
喜德县| 石河子市| 柳州市| 晋城| 嘉荫县| 桓仁| 宜兰市| 格尔木市| 宁津县| 宜州市| 嘉峪关市| 涿鹿县| 田东县| 大城县| 富顺县| 隆尧县| 桐庐县| 泽普县| 江山市| 沁阳市| 宾川县| 体育| 瓦房店市| 丹东市| 哈尔滨市| 沙坪坝区| 桓仁| 高唐县| 车致| 扬中市| 都匀市| 永胜县| 元阳县| 崇明县| 舟山市| 文成县| 桂阳县| 金堂县| 丰城市| 商洛市| 长葛市|