找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Regress Arguments; Claude Gratton Book 2009 Springer Science+Business Media B.V. 2009 David Hume.Plato.benign regress.empirical l

[復制鏈接]
樓主: 自治
21#
發(fā)表于 2025-3-25 04:49:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:40:42 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:05 | 只看該作者
factivity problem, have to be rephrased to account for the contextualist understanding of the semantics of “know”. It could be wondered, therefore, if other principles that might tacitly play a role in the argument of the conundrum need a similar treatment. In this chapter we will try to reply to t
24#
發(fā)表于 2025-3-25 19:37:05 | 只看該作者
25#
發(fā)表于 2025-3-25 23:01:58 | 只看該作者
Viciousness,ned in the first chapter, a result is . if either it is a false statement, or it conflicts with a statement or rule that we are unwilling to abandon. The following diagram, presented in the first chapter, helps us to locate the subordinate argument.
26#
發(fā)表于 2025-3-26 03:20:15 | 只看該作者
Circular Definitions, Circular Explanations, and Infinite Regresses, and circular explanations. For some philosophers believe that circular definitions and circular explanations entail infinite regresses (Sanford, 1984: 94; Day, 1986: 97; Moore, 1962: 109; Rankin, 1981: 335). For example, here is Russell’s (1996:348–349) view on circular definition.
27#
發(fā)表于 2025-3-26 08:17:27 | 只看該作者
28#
發(fā)表于 2025-3-26 10:28:08 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:37 | 只看該作者
1566-7650 emises.Identifies different kinds of infinite regress argume.Infinite regress arguments. are part of a philosopher‘s tool kit of argumentation. But how sharp or strong is this tool? How effectively is it used? The typical presentation of infinite regress arguments throughout history is so succinct a
30#
發(fā)表于 2025-3-26 20:13:44 | 只看該作者
https://doi.org/10.1007/978-90-481-3341-3David Hume; Plato; benign regress; empirical logic; formal logic; infinite regress; logic; philosophy; reaso
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-28 20:19
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
项城市| 岑溪市| 如东县| 奉新县| 钟祥市| 博白县| 宕昌县| 会泽县| 陆河县| 绵竹市| 南岸区| 桦甸市| 介休市| 静宁县| 张掖市| 兰溪市| 仁怀市| 江门市| 太仆寺旗| 大港区| 绥宁县| 和平区| 搜索| 河西区| 屏东县| 赣州市| 西贡区| 常山县| 新巴尔虎右旗| 贵州省| 双辽市| 顺义区| 财经| 柏乡县| 建宁县| 张家界市| 交城县| 仙桃市| 敦煌市| 新蔡县| 怀宁县|