找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Linear Groups; An Account of the Gr Bertram A. F. Wehrfritz Book 1973 Springer-Verlag Berlin Heidelberg 1973 Abelian group.Finite.

[復(fù)制鏈接]
樓主: 清楚明確
21#
發(fā)表于 2025-3-25 04:45:49 | 只看該作者
Basic Concepts,main and will usually be either a field or ?). .. denotes the .-algebra of . × . matrices and GL(., .) the group of units of .. By definition a . is a subgroup of GL(., .) for some positive integer . and some (commutative) ..
22#
發(fā)表于 2025-3-25 08:13:42 | 只看該作者
23#
發(fā)表于 2025-3-25 13:36:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:16:29 | 只看該作者
-Groups and the Zariski Topology,Let . be the space of .row vectors over the field . and . [.,..., .], the polynomial ring over . in . indeterminates. A subset . of . is said to be . in . if there exists a subset . of . such that . is the set of zeros of ., that is if. If . is any subset of . let .(.) denote the set of zeros of S (in .). Note that .and ..
25#
發(fā)表于 2025-3-25 23:56:14 | 只看該作者
Supersoluble and Locally Supersoluble Linear Groups,This chapter consists mainly of an account of papers [69 a] and [69 b], although the order of our development will be somewhat different. The motivation of much of this work came from the following result, a generalization of 1.14.
26#
發(fā)表于 2025-3-26 02:35:40 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:23 | 只看該作者
years or so has been the increasing use of properties of infinite linear groups in the theory of (abstract) groups, although the story of infinite linear groups as such goes back to the early years of this century with the work of Burnside and Schur particularly. Infinite linear groups arise in gro
28#
發(fā)表于 2025-3-26 11:15:15 | 只看該作者
Finitely Generated Linear Groups, the properties of these groups in the following order: their residual properties (especially finite ones), their Frattini properties, their centrality properties, and finally their chief factors and maximal subgroups.
29#
發(fā)表于 2025-3-26 16:21:05 | 只看該作者
30#
發(fā)表于 2025-3-26 18:27:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰察布市| 大城县| 枞阳县| 太和县| 灵山县| 万全县| 光泽县| 永靖县| 巧家县| 罗江县| 淳化县| 乐至县| 平南县| 陇川县| 柘荣县| 定襄县| 苗栗市| 临高县| 东乌珠穆沁旗| 获嘉县| 阿坝| 崇明县| 黄平县| 黄山市| 当涂县| 新巴尔虎右旗| 宁夏| 博爱县| 都匀市| 阿瓦提县| 德安县| 华亭县| 宁城县| 新郑市| 旬邑县| 浦县| 阆中市| 巴东县| 华池县| 德格县| 崇义县|