找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Dimensional Groups with Applications; V. Kac Conference proceedings 1985 Springer Science+Business Media New York 1985 Applicatio

[復(fù)制鏈接]
樓主: minuscule
41#
發(fā)表于 2025-3-28 16:31:12 | 只看該作者
42#
發(fā)表于 2025-3-28 20:03:33 | 只看該作者
,Flag Manifolds and Infinite Dimensional K?hler Geometry,complex projective spaces and Grassmannians), which are of the form G/C(T) for a circle T ? G, are flag manifolds. The generic examples, though, are flag manifolds of the form G/T for T a maximal torus. The name derives from the manifold U(n)/diagonals of flags C0 = V. ? V. ? V. ? … ? V. = ?. in com
43#
發(fā)表于 2025-3-29 01:06:51 | 只看該作者
44#
發(fā)表于 2025-3-29 06:16:27 | 只看該作者
Instantons and Harmonic Maps, shall be concerned with two recent examples, namely Yang-Mills theory and the theory of σ-models. Two striking features here are (a) the existence of special solutions known as ., and (b) the possibility of a topological relation between the parameter space or . . of instantons and the space on whi
45#
發(fā)表于 2025-3-29 07:50:48 | 只看該作者
46#
發(fā)表于 2025-3-29 12:58:35 | 只看該作者
Constructing Groups Associated to Infinite-Dimensional Lie Algebras,bras is discussed. In the first part a general framework is outlined; here most of the discussion consists of definitions, examples and open problems. Deep results are available only in the case of groups associated to Kac-Moody algebras, which are discussed in the second part; it is based on joint
47#
發(fā)表于 2025-3-29 18:49:27 | 只看該作者
48#
發(fā)表于 2025-3-29 23:12:02 | 只看該作者
49#
發(fā)表于 2025-3-30 02:07:07 | 只看該作者
50#
發(fā)表于 2025-3-30 05:47:42 | 只看該作者
An Adjoint Quotient for Certain Groups Attached to Kac-Moody Algebras, to Kac-Moody Lie algebras. These investigations were motivated on one side by the result of Brieskorn relating simple singularities and simple algebraic groups (see for instance [14]) and on the other side by recent results of Looijenga on the deformation theory of simply elliptic and cusp singular
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西畴县| 汶上县| 万安县| 清新县| 长丰县| 西乌珠穆沁旗| 留坝县| 垦利县| 丰台区| 南开区| 保康县| 灵寿县| 全椒县| 治县。| 静乐县| 安丘市| 中牟县| 定兴县| 平顶山市| 新竹县| 广宁县| 松潘县| 琼中| 阳高县| 威海市| 尉氏县| 南汇区| 灌云县| 上高县| 克什克腾旗| 沐川县| 雷山县| 水富县| 垣曲县| 肃南| 乌鲁木齐市| 黔南| 通州区| 台北市| 伽师县| 当雄县|