找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Dimensional Dynamical Systems; John Mallet-Paret,Jianhong Wu,Huaiping Zhu Book 2013 Springer Science+Business Media New York 2013

[復制鏈接]
查看: 41289|回復: 63
樓主
發(fā)表于 2025-3-21 19:35:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Infinite Dimensional Dynamical Systems
編輯John Mallet-Paret,Jianhong Wu,Huaiping Zhu
視頻videohttp://file.papertrans.cn/465/464622/464622.mp4
概述Includes the last paper co-authored by legendary dynamist Jack Hale, and honors legendary scientist George Sell, who has contributed to the subject for several decades.Discusses cutting-edge developme
叢書名稱Fields Institute Communications
圖書封面Titlebook: Infinite Dimensional Dynamical Systems;  John Mallet-Paret,Jianhong Wu,Huaiping Zhu Book 2013 Springer Science+Business Media New York 2013
描述?This collection covers a wide range of topics of infinitedimensional dynamical systems generated by parabolic partial differentialequations, hyperbolic partial differential equations, solitary equations,lattice differential equations, delay differential equations, and stochasticdifferential equations.Infinite dimensional dynamical systems are generated byevolutionary equations describing the evolutions in time of systems whosestatus must be depicted in infinite dimensional phase spaces. Studying thelong-term behaviors of such systems is important in our understanding of theirspatiotemporal pattern formation and global continuation, and has been amongmajor sources of motivation and applications of new developments of nonlinearanalysis and other mathematical theories. Theories of the infinite dimensionaldynamical systems have also found more and more important applications inphysical, chemical, and life sciences.This book collects 19 papers from 48 invited lecturers tothe International Conference on Infinite Dimensional Dynamical Systems held atYork University, Toronto, in September of 2008. As the conference was dedicatedto Professor George Sell from University of Minnesota on the
出版日期Book 2013
關鍵詞hyperbolic partial differential equations; infinite dimensional dynamical systems; non-autonomous dyna
版次1
doihttps://doi.org/10.1007/978-1-4614-4523-4
isbn_softcover978-1-4899-9993-1
isbn_ebook978-1-4614-4523-4Series ISSN 1069-5265 Series E-ISSN 2194-1564
issn_series 1069-5265
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書目名稱Infinite Dimensional Dynamical Systems影響因子(影響力)




書目名稱Infinite Dimensional Dynamical Systems影響因子(影響力)學科排名




書目名稱Infinite Dimensional Dynamical Systems網(wǎng)絡公開度




書目名稱Infinite Dimensional Dynamical Systems網(wǎng)絡公開度學科排名




書目名稱Infinite Dimensional Dynamical Systems被引頻次




書目名稱Infinite Dimensional Dynamical Systems被引頻次學科排名




書目名稱Infinite Dimensional Dynamical Systems年度引用




書目名稱Infinite Dimensional Dynamical Systems年度引用學科排名




書目名稱Infinite Dimensional Dynamical Systems讀者反饋




書目名稱Infinite Dimensional Dynamical Systems讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:24:21 | 只看該作者
Global Hopf Bifurcation Analysis of a Neuron Network Model with Time Delays,rmal form method and center manifold theorem. To show that periodic solutions exist away from the bifurcation points, we establish that local Hopf branches globally extend for arbitrarily large delays.
地板
發(fā)表于 2025-3-22 07:13:21 | 只看該作者
Instability of Low Density Supersonic Waves of a Viscous Isentropic Gas Flow Through a Nozzle, unstable; more precisely, we will establish the existence of positive eigenvalues for the linearization along such waves. The result is achieved via a center manifold reduction of the eigenvalue problem. The reduced eigenvalue problem is then studied in the framework of the Sturm–Liouville Theory.
5#
發(fā)表于 2025-3-22 09:33:28 | 只看該作者
Semiflows for Neutral Equations with State-Dependent Delays, .-functions. The hypotheses are satisfied for a prototype equation of the form . with?.<.(.(.))<0, which for certain . and . models the interaction between following a trend and negative feedback with respect to some equilibrium state.
6#
發(fā)表于 2025-3-22 13:59:13 | 只看該作者
Global Attractor of a Coupled Two-Cell Brusselator Model,actness of this type of four-variable reaction-diffusion systems with cubic autocatalytic nonlinearity and with linear coupling. It is also proved that the Hausdorff dimension and the fractal dimension of the global attractor are finite.
7#
發(fā)表于 2025-3-22 19:59:32 | 只看該作者
Projectors on the Generalized Eigenspaces for Partial Differential Equations with Time Delay,rmulas for the projectors on the generalized eigenspaces associated to some eigenvalues. As examples, we apply the obtained results to study a reaction-diffusion equation with delay and an age-structured model with delay.
8#
發(fā)表于 2025-3-22 22:23:13 | 只看該作者
1069-5265 subject for several decades.Discusses cutting-edge developme?This collection covers a wide range of topics of infinitedimensional dynamical systems generated by parabolic partial differentialequations, hyperbolic partial differential equations, solitary equations,lattice differential equations, dela
9#
發(fā)表于 2025-3-23 05:19:29 | 只看該作者
Persistence of Periodic Orbits for Perturbed Dissipative Dynamical Systems,tion (with a period near the period of the periodic solution of the unperturbed problem). We review some methods of proofs, used in the case of systems of ordinary differential equations, and discuss their extensions to the infinite-dimensional case.
10#
發(fā)表于 2025-3-23 06:24:11 | 只看該作者
Spectral Theory for Forward Nonautonomous Parabolic Equations and Applications,s a nonempty compact interval. Fundamental properties of the principal spectrum for forward nonautonomous equations are investigated. The paper concludes with applications of the principal spectrum theory to the problem of uniform persistence in some population growth models.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 07:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
嫩江县| 丰城市| 长白| 鹤庆县| 阿克陶县| 大冶市| 自贡市| 蒲城县| 民县| 绿春县| 喀喇沁旗| 西藏| 手机| 贺兰县| 卢龙县| 岫岩| 临夏县| 章丘市| 石阡县| 三穗县| 乐昌市| 鄂州市| 高要市| 武冈市| 云阳县| 滦南县| 绥宁县| 穆棱市| 水富县| 微山县| 安西县| 独山县| 滦南县| 安新县| 德阳市| 和田市| 凌云县| 大余县| 济南市| 台东县| 奎屯市|