找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Dimensional Analysis; A Hitchhiker’s Guide Charalambos D. Aliprantis,Kim C. Border Book 19992nd edition Springer-Verlag Berlin Hei

[復(fù)制鏈接]
樓主: 回憶錄
21#
發(fā)表于 2025-3-25 04:03:40 | 只看該作者
22#
發(fā)表于 2025-3-25 11:13:34 | 只看該作者
23#
發(fā)表于 2025-3-25 15:32:04 | 只看該作者
24#
發(fā)表于 2025-3-25 18:54:23 | 只看該作者
Charges and measures, —∞.) In this chapter we consider set functions that have some of the properties ascribed to area. The main property is .. The area of two regions that do not overlap is the sum of their areas. A . is any nonnegative set function that is additive in this sense. A . is a charge that is countably addi
25#
發(fā)表于 2025-3-25 23:19:26 | 只看該作者
26#
發(fā)表于 2025-3-26 03:34:16 | 只看該作者
Charalambos D. Aliprantis,Kim C. BorderFirst book to present functional analysis in a unified manner with applications to economics, social sciences, and engineering.A modern, clear and comprehensive treatment of functional analysis
27#
發(fā)表于 2025-3-26 05:13:59 | 只看該作者
28#
發(fā)表于 2025-3-26 10:49:47 | 只看該作者
Odds and ends,ere else. Our presentation is informal and we do not prove many of our claims. We also use this chapter to standardize some terminology and notation. In particular, Section 1.3 introduces a number of kinds of binary relations.
29#
發(fā)表于 2025-3-26 12:45:20 | 只看該作者
Normed spaces,te dimensional vector space, the Hausdorff linear topology the norm generates is unique (Theorem 5.65). The Euclidean norm makes ?. into a complete metric space. A normed space that is complete in the metric induced by its norm is called a .. Here is an overview of some of the more salient results in this chapter.
30#
發(fā)表于 2025-3-26 19:29:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖北省| 上杭县| 长白| 含山县| 上饶县| 绥滨县| 溧阳市| 长武县| 墨脱县| 石狮市| 观塘区| 固始县| 卢龙县| 泊头市| 茂名市| 南投市| 顺昌县| 大姚县| 鸡东县| 卢氏县| 平罗县| 垦利县| 平江县| 肥乡县| 阿拉善右旗| 皮山县| 靖宇县| 大余县| 顺义区| 仙居县| 明溪县| 三明市| 温州市| 和平县| 汉源县| 神木县| 哈巴河县| 太湖县| 建平县| 福州市| 海安县|