找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Inequalities; Theorems, Techniques Zdravko Cvetkovski Book 2012 Springer-Verlag Berlin Heidelberg 2012 Cauchy-Schwarz inequality.H?lder’s i

[復(fù)制鏈接]
樓主: Indigent
11#
發(fā)表于 2025-3-23 11:44:19 | 只看該作者
,Generalizations of the Cauchy–Schwarz Inequality, Chebishev’s Inequality and the Mean Inequalities,In Chap.?. we presented the ., . and the .. In this section we will give their generalizations. The proof of first theorem is left to the reader, since it is similar to the proof of ..
12#
發(fā)表于 2025-3-23 16:16:14 | 只看該作者
,Newton’s Inequality, Maclaurin’s Inequality,Let ..,..,…,.. be arbitrary real numbers..Consider the polynomial . Then the coefficients ..,..,…,.. can be expressed as functions of ..,..,…,.., i.e. we have . For each .=1,2,…,. we define ..
13#
發(fā)表于 2025-3-23 18:49:01 | 只看該作者
14#
發(fā)表于 2025-3-23 23:37:42 | 只看該作者
Two Theorems from Differential Calculus, and Their Applications for Proving Inequalities,In this section we’ll give two theorems (without proof), whose origins are part of differential calculus, and which are widely used in proving certain inequalities. We assume that the reader has basic knowledge of differential calculus.
15#
發(fā)表于 2025-3-24 03:24:43 | 只看該作者
16#
發(fā)表于 2025-3-24 07:30:59 | 只看該作者
Sum of Squares (SOS Method),One of the basic procedures for proving inequalities is to rewrite them as a sum of squares (.) and then, according to the most elementary property that the square of a real number is non-negative, to prove a certain inequality. This property is the basis of the SOS method.
17#
發(fā)表于 2025-3-24 12:23:04 | 只看該作者
18#
發(fā)表于 2025-3-24 16:49:31 | 只看該作者
,Bernoulli’s Inequality, the Cauchy–Schwarz Inequality, Chebishev’s Inequality, Surányi’s Inequalityl inequalities containing more variables, and inequalities which are difficult to prove with already adopted elementary inequalities. These inequalities are often used for proving different inequalities for mathematical competitions.
19#
發(fā)表于 2025-3-24 20:39:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:26:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松桃| 海口市| 达拉特旗| 忻城县| 郓城县| 马龙县| 商南县| 黄梅县| 额尔古纳市| 无锡市| 来安县| 洛川县| 秀山| 新田县| 桦甸市| 紫云| 静乐县| 来安县| 安远县| 襄城县| 通州区| 宁海县| 海林市| 上蔡县| 喀什市| 新营市| 阿巴嘎旗| 长子县| 荔浦县| 新民市| 辉县市| 久治县| 成安县| 兴和县| 肃宁县| 海城市| 买车| 麦盖提县| 汉沽区| 宁国市| 龙口市|