找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Industrial Recommender System; Principles, Technolo Lantao Hu,Yueting Li,Kexin Yi Book 2024 Publishing House of Electronics Industry, Beiji

[復(fù)制鏈接]
查看: 49407|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:14:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Industrial Recommender System
副標(biāo)題Principles, Technolo
編輯Lantao Hu,Yueting Li,Kexin Yi
視頻videohttp://file.papertrans.cn/465/464099/464099.mp4
概述Provides a comprehensive introduction to almost all aspects of Industrial Recommender System.Incorporates practical business issues from real word, providing general optimization strategies and techni
圖書封面Titlebook: Industrial Recommender System; Principles, Technolo Lantao Hu,Yueting Li,Kexin Yi Book 2024 Publishing House of Electronics Industry, Beiji
描述.Recommender systems, as a highly popular AI technology in recent years, have been widely applied across various industries. They have transformed the way we interact with technology, influencing our choices and shaping our experiences. This book provides a comprehensive introduction to industrial recommender systems, starting with the overview of the technical framework, gradually delving into each core module such as content understanding, user profiling, recall, ranking, re-ranking and so on, and introducing the key technologies and practices in enterprises...The book also addresses common challenges in recommendation cold start, recommendation bias and debiasing. Additionally, it introduces advanced technologies in the field, such as reinforcement learning, causal inference...Professionals working in the fields of recommender systems, computational advertising, and search will find this book valuable. It is also suitable for undergraduate, graduate, and doctoral students majoring in artificial intelligence, computer science, software engineering, and related disciplines. Furthermore, it caters to readers with an interest in recommender systems, providing them with an understand
出版日期Book 2024
關(guān)鍵詞Recommender System; Personalized recommendation; Deep Learning; Machine Learning; Artificial Intelligenc
版次1
doihttps://doi.org/10.1007/978-981-97-2581-6
isbn_softcover978-981-97-2583-0
isbn_ebook978-981-97-2581-6
copyrightPublishing House of Electronics Industry, Beijing, China 2024
The information of publication is updating

書目名稱Industrial Recommender System影響因子(影響力)




書目名稱Industrial Recommender System影響因子(影響力)學(xué)科排名




書目名稱Industrial Recommender System網(wǎng)絡(luò)公開度




書目名稱Industrial Recommender System網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Industrial Recommender System被引頻次




書目名稱Industrial Recommender System被引頻次學(xué)科排名




書目名稱Industrial Recommender System年度引用




書目名稱Industrial Recommender System年度引用學(xué)科排名




書目名稱Industrial Recommender System讀者反饋




書目名稱Industrial Recommender System讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:25:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:29:19 | 只看該作者
地板
發(fā)表于 2025-3-22 08:18:55 | 只看該作者
5#
發(fā)表于 2025-3-22 10:58:40 | 只看該作者
6#
發(fā)表于 2025-3-22 16:10:17 | 只看該作者
,The Tool for System Evolution—AB Testing Platform,deep impression on the readers. However, the designers and users of recommender systems also need a mature and sophisticated system for evaluating and indicating recommender systems to guide the evolution of recommender system technology, which is the protagonist of this chapter—the AB testing platform.
7#
發(fā)表于 2025-3-22 19:17:55 | 只看該作者
8#
發(fā)表于 2025-3-22 23:41:46 | 只看該作者
9#
發(fā)表于 2025-3-23 01:25:45 | 只看該作者
The All-Encompassing Recall Stage,iltering. Serving as the primary information filter, the recall stage sifts through vast amounts of content across multiple dimensions to identify the most relevant information that users are likely to find interesting. This filtered content is then passed on to subsequent relevance ranking technolo
10#
發(fā)表于 2025-3-23 07:32:08 | 只看該作者
,The Tool for System Evolution—AB Testing Platform,hness of recall, the comprehensiveness of portraits, the embedded thinking of content understanding, the balance of re-ranking, etc., have all left a deep impression on the readers. However, the designers and users of recommender systems also need a mature and sophisticated system for evaluating and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永仁县| 山阳县| 广东省| 青神县| 裕民县| 屏山县| 马龙县| 聊城市| 济宁市| 任丘市| 北流市| 汉川市| 闻喜县| 东平县| 许昌县| 东丽区| 广南县| 无棣县| 桐梓县| 界首市| 伊吾县| 维西| 仪陇县| 扎赉特旗| 高邑县| 新安县| 叶城县| 襄樊市| 文山县| 怀柔区| 海盐县| 辰溪县| 花莲市| 黄石市| 芦山县| 张北县| 太康县| 渝中区| 芷江| 长泰县| 竹北市|