找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inductive Logic Programming; 27th International C Nicolas Lachiche,Christel Vrain Conference proceedings 2018 Springer International Publis

[復制鏈接]
樓主: obdurate
21#
發(fā)表于 2025-3-25 04:15:42 | 只看該作者
22#
發(fā)表于 2025-3-25 08:24:51 | 只看該作者
Positive and Unlabeled Relational Classification Through Label Frequency Estimation,lore if using the label frequency would also be useful when working with relational data and (2) to propose a method for estimating the label frequency from relational positive and unlabeled data. Our experiments confirm the usefulness of knowing the label frequency and of our estimate.
23#
發(fā)表于 2025-3-25 13:50:13 | 只看該作者
Stacked Structure Learning for Lifted Relational Neural Networks,ll possible Horn clauses, considering the predicates that occur in the training examples as well as invented soft concepts entailed by the best weighted rules found so far. In the experiments, we demonstrate the ability to automatically induce useful hierarchical soft concepts leading to deep LRNNs with a competitive predictive power.
24#
發(fā)表于 2025-3-25 17:57:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:12:22 | 只看該作者
0302-9743 ng, ILP 2017, held in Orléans, France, in September 2017.. The 12 full papers presented were carefully reviewed and selected from numerous submissions.. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation langu
26#
發(fā)表于 2025-3-26 02:12:10 | 只看該作者
27#
發(fā)表于 2025-3-26 06:55:08 | 只看該作者
On Applying Probabilistic Logic Programming to Breast Cancer Data,and rules reflecting domain knowledge were introduced. A PILP predictive model was built automatically from this data and experiments show that it can not only match the predictions of a team of experts in the area, but also consistently reduce the error rate of malignancy prediction, when compared to other non-relational techniques.
28#
發(fā)表于 2025-3-26 11:37:24 | 只看該作者
29#
發(fā)表于 2025-3-26 14:31:52 | 只看該作者
Parallel Online Learning of Event Definitions,es, in a single pass over a data stream. In this work we present a version of . that allows for parallel, online learning. We evaluate our approach on a benchmark activity recognition dataset and show that we can reduce training times, while achieving super-linear speed-ups on some occasions.
30#
發(fā)表于 2025-3-26 18:32:08 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-6 22:42
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
游戏| 龙南县| 镇宁| 大荔县| 济宁市| 会宁县| 砚山县| 邵东县| 上思县| 封丘县| 高尔夫| 西贡区| 讷河市| 罗田县| 苏尼特左旗| 彭山县| 屏南县| 惠来县| 玉田县| 临海市| 灵宝市| 岳阳市| 夏邑县| 平阴县| 邹平县| 西盟| 平泉县| 梅河口市| 乐山市| 清河县| 卢龙县| 甘泉县| 资源县| 徐闻县| 九寨沟县| 思茅市| 南岸区| 石阡县| 双柏县| 贺兰县| 吉隆县|