找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Inductive Logic Programming; 29th International C Dimitar Kazakov,Can Erten Conference proceedings 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: COAX
31#
發(fā)表于 2025-3-26 22:19:13 | 只看該作者
Towards an ILP Application in Machine Ethics,In this paper we address the problem of representing and acquiring rules of codes of ethics in the online customer service domain. The proposed solution approach relies on the non-monotonic features of Answer Set Programming (ASP) and applies ILP. The approach is illustrated by means of examples tak
32#
發(fā)表于 2025-3-27 03:14:23 | 只看該作者
On the Relation Between Loss Functions and T-Norms,his success has been the development of new loss functions, like the popular cross-entropy loss, which has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. While the cross-entropy loss is usually justified from a probabilistic perspective
33#
發(fā)表于 2025-3-27 08:23:58 | 只看該作者
34#
發(fā)表于 2025-3-27 13:08:00 | 只看該作者
35#
發(fā)表于 2025-3-27 17:13:16 | 只看該作者
Learning Logic Programs from Noisy State Transition Data, before being able to produce useful output. Such short-coming often limits their application to real world data. On the other hand, neural networks are generally known to be robust against noisy data. However, a fully trained neural network does not provide easily understandable rules that can be u
36#
發(fā)表于 2025-3-27 20:47:21 | 只看該作者
37#
發(fā)表于 2025-3-28 00:57:55 | 只看該作者
38#
發(fā)表于 2025-3-28 03:30:36 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:45 | 只看該作者
Learning Probabilistic Logic Programs over Continuous Data,m in the field is probabilistic logic programming (PLP): the enabling of stochastic primitives in logic programming. While many systems offer inference capabilities, the more significant challenge is that of learning meaningful and interpretable symbolic representations from data. In that regard, in
40#
發(fā)表于 2025-3-28 12:43:42 | 只看該作者
its environment it is necessary to be able to react to unforeseen events in real-time on basically all levels of abstraction. Having this goal in mind, our contributions reach from fundamental understanding of human injury due to robot-human collisions as the underlying metric for “safe” behavior, v
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 19:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万年县| 灵宝市| 吴桥县| 和田县| 万载县| 申扎县| 周宁县| 永康市| 长阳| 响水县| 隆化县| 务川| 平顶山市| 朔州市| 乌审旗| 莎车县| 峡江县| 庐江县| 平安县| 盐边县| 元阳县| 彩票| 崇明县| 潮州市| 康马县| 黄大仙区| 资源县| 长顺县| 台湾省| 屏东市| 康保县| 清流县| 叙永县| 淳化县| 清涧县| 石棉县| 双桥区| 兰西县| 油尖旺区| 合阳县| 淅川县|