找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inductive Logic Programming; 29th International C Dimitar Kazakov,Can Erten Conference proceedings 2020 Springer Nature Switzerland AG 2020

[復制鏈接]
查看: 36082|回復: 50
樓主
發(fā)表于 2025-3-21 16:05:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Inductive Logic Programming
副標題29th International C
編輯Dimitar Kazakov,Can Erten
視頻videohttp://file.papertrans.cn/464/463888/463888.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Inductive Logic Programming; 29th International C Dimitar Kazakov,Can Erten Conference proceedings 2020 Springer Nature Switzerland AG 2020
描述.This book constitutes the refereed conference proceedings of the 29th International Conference on Inductive Logic Programming, ILP 2019, held in Plovdiv, Bulgaria, in September 2019...The 11 papers presented were carefully reviewed and selected from numerous submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data..
出版日期Conference proceedings 2020
關(guān)鍵詞artificial intelligence; computer programming; computer systems; data mining; formal logic; inductive log
版次1
doihttps://doi.org/10.1007/978-3-030-49210-6
isbn_softcover978-3-030-49209-0
isbn_ebook978-3-030-49210-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Inductive Logic Programming影響因子(影響力)




書目名稱Inductive Logic Programming影響因子(影響力)學科排名




書目名稱Inductive Logic Programming網(wǎng)絡(luò)公開度




書目名稱Inductive Logic Programming網(wǎng)絡(luò)公開度學科排名




書目名稱Inductive Logic Programming被引頻次




書目名稱Inductive Logic Programming被引頻次學科排名




書目名稱Inductive Logic Programming年度引用




書目名稱Inductive Logic Programming年度引用學科排名




書目名稱Inductive Logic Programming讀者反饋




書目名稱Inductive Logic Programming讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:21:26 | 只看該作者
Rapid Restart Hill Climbing for Learning Description Logic Concepts,r expansion by traversing the search tree in a hill climbing manner and rapidly restarts with one-step backtracking after each expansion. We provide an implementation of RRHC in the DL-Learner framework and compare its performance with CELOE using standard benchmarks.
板凳
發(fā)表于 2025-3-22 03:57:36 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:09 | 只看該作者
Towards Meta-interpretive Learning of Programming Language Semantics, scenario, including abstracting over function symbols, nonterminating examples, and learning non-observed predicates, and propose extensions to Metagol helpful for overcoming these challenges, which may prove useful in other domains.
5#
發(fā)表于 2025-3-22 09:09:11 | 只看該作者
Towards an ILP Application in Machine Ethics,on approach relies on the non-monotonic features of Answer Set Programming (ASP) and applies ILP. The approach is illustrated by means of examples taken from the preliminary tests conducted with a couple of state-of-the-art ILP algorithms for learning ASP rules.
6#
發(fā)表于 2025-3-22 15:06:43 | 只看該作者
7#
發(fā)表于 2025-3-22 17:07:23 | 只看該作者
Learning Logic Programs from Noisy State Transition Data,sed to understand the underlying model. In this paper, we propose a Differentiable Learning from Interpretation Transition (.-LFIT) algorithm, that can simultaneously output logic programs fully explaining the state transitions, and also learn from data containing noise and error.
8#
發(fā)表于 2025-3-22 22:33:47 | 只看該作者
9#
發(fā)表于 2025-3-23 03:12:11 | 只看該作者
0302-9743 xamples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data..978-3-030-49209-0978-3-030-49210-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
10#
發(fā)表于 2025-3-23 08:00:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 17:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宝清县| 紫云| 将乐县| 大余县| 遂川县| 韩城市| 寿阳县| 镶黄旗| 卫辉市| 巨野县| 深泽县| 本溪| 澳门| 文水县| 东源县| 通城县| 监利县| 临汾市| 名山县| 湘乡市| 民乐县| 江川县| 宁乡县| 本溪市| 自贡市| 鹤岗市| 衡阳县| 安宁市| 沙田区| 潜山县| 鹤峰县| 郧西县| 芒康县| 曲麻莱县| 松阳县| 通城县| 来凤县| 陆丰市| 南江县| 河南省| 汶上县|