找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inductive Inference for Large Scale Text Classification; Kernel Approaches an Catarina Silva,Bernardete Ribeiro Book 2010 Springer-Verlag B

[復(fù)制鏈接]
查看: 24758|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:22:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Inductive Inference for Large Scale Text Classification
副標(biāo)題Kernel Approaches an
編輯Catarina Silva,Bernardete Ribeiro
視頻videohttp://file.papertrans.cn/464/463884/463884.mp4
概述Presents recent research in inductive inference for Large Scale Text Classification
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Inductive Inference for Large Scale Text Classification; Kernel Approaches an Catarina Silva,Bernardete Ribeiro Book 2010 Springer-Verlag B
描述.Text classification is becoming a crucial task to analysts in different areas. In the last few decades, the production of textual documents in digital form has increased exponentially. Their applications range from web pages to scientific documents, including emails, news and books. Despite the widespread use of digital texts, handling them is inherently difficult - the large amount of data necessary to represent them and the subjectivity of classification complicate matters...This book gives a concise view on how to use kernel approaches for inductive inference in large scale text classification; it presents a series of new techniques to enhance, scale and distribute text classification tasks. It is not intended to be a comprehensive survey of the state-of-the-art of the whole field of text classification. Its purpose is less ambitious and more practical: to explain and illustrate some of the important methods used in this field, in particular kernel approaches and techniques..
出版日期Book 2010
關(guān)鍵詞Kernel Approach; Text Classification; classification; computational intelligence; intelligence; kernel
版次1
doihttps://doi.org/10.1007/978-3-642-04533-2
isbn_softcover978-3-642-26134-3
isbn_ebook978-3-642-04533-2Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Inductive Inference for Large Scale Text Classification影響因子(影響力)




書目名稱Inductive Inference for Large Scale Text Classification影響因子(影響力)學(xué)科排名




書目名稱Inductive Inference for Large Scale Text Classification網(wǎng)絡(luò)公開度




書目名稱Inductive Inference for Large Scale Text Classification網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Inductive Inference for Large Scale Text Classification被引頻次




書目名稱Inductive Inference for Large Scale Text Classification被引頻次學(xué)科排名




書目名稱Inductive Inference for Large Scale Text Classification年度引用




書目名稱Inductive Inference for Large Scale Text Classification年度引用學(xué)科排名




書目名稱Inductive Inference for Large Scale Text Classification讀者反饋




書目名稱Inductive Inference for Large Scale Text Classification讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:11 | 只看該作者
Enhancing SVMs for Text Classificationlearning techniques that integrate knowledge in the classification task to improve the performance of support vector machines (SVMs) in text classification applications..The introduction of unlabeled data in the learning stage is investigated. With the deluge of digital text data, unlabeled texts ar
板凳
發(fā)表于 2025-3-22 02:27:28 | 只看該作者
Scaling RVMs for Text Classificationattention in this chapter to relevance vector machines (RVMs) and their application to text classification. RVMs’ probabilistic Bayesian nature allows both predictive distributions on testing instances and model-based selection that yields a parsimonious solution. However, scaling up the algorithm i
地板
發(fā)表于 2025-3-22 07:34:30 | 只看該作者
5#
發(fā)表于 2025-3-22 09:52:15 | 只看該作者
Framework for Text Classificationhe common underlying thread has been the integration of knowledge in the inference of inductive learning models without penalizing processing time. This chapter unifies the main topics of this book into a framework. An inductive inference-based text classification framework will provide basic generi
6#
發(fā)表于 2025-3-22 13:59:34 | 只看該作者
7#
發(fā)表于 2025-3-22 19:22:58 | 只看該作者
8#
發(fā)表于 2025-3-23 00:10:15 | 只看該作者
9#
發(fā)表于 2025-3-23 02:56:05 | 只看該作者
10#
發(fā)表于 2025-3-23 06:40:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 19:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐亭县| 大安市| 新和县| 壤塘县| 兴宁市| 汾西县| 芮城县| 兴海县| 滕州市| 卢龙县| 安龙县| 广灵县| 泰和县| 迁西县| 饶河县| 纳雍县| 庆元县| 乌苏市| 和平区| 麻城市| 共和县| 盐山县| 铜陵市| 阳朔县| 泽普县| 景泰县| 抚远县| 阳谷县| 临沧市| 时尚| 霍山县| 新宁县| 曲靖市| 麻阳| 中方县| 开平市| 都江堰市| 五河县| 那曲县| 拉萨市| 沙雅县|