找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Individual and Collective Graph Mining; Principles, Algorith Danai Koutra,Christos Faloutsos Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
查看: 42217|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:01:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Individual and Collective Graph Mining
副標(biāo)題Principles, Algorith
編輯Danai Koutra,Christos Faloutsos
視頻videohttp://file.papertrans.cn/464/463724/463724.mp4
叢書名稱Synthesis Lectures on Data Mining and Knowledge Discovery
圖書封面Titlebook: Individual and Collective Graph Mining; Principles, Algorith Danai Koutra,Christos Faloutsos Book 2018 Springer Nature Switzerland AG 2018
描述Graphs naturally represent information ranging from links between web pages, to communication in email networks, to connections between neurons in our brains. These graphs often span billions of nodes and interactions between them. Within this deluge of interconnected data, how can we find the most important structures and summarize them? How can we efficiently visualize them? How can we detect anomalies that indicate critical events, such as an attack on a computer system, disease formation in the human brain, or the fall of a company?This book presents scalable, principled discovery algorithms that combine globality with locality to make sense of one or more graphs. In addition to fast algorithmic methodologies, we also contribute graph-theoretical ideas and models, and real-world applications in two main areas:..Individual Graph Mining: We show how to interpretably summarize a single graph by identifying its important graph structures. We complement summarization with inference, which leverages information about few entities (obtained via summarization or other methods) and the network structure to efficiently and effectively learn information about the unknown entities...Collec
出版日期Book 2018
版次1
doihttps://doi.org/10.1007/978-3-031-01911-1
isbn_softcover978-3-031-00783-5
isbn_ebook978-3-031-01911-1Series ISSN 2151-0067 Series E-ISSN 2151-0075
issn_series 2151-0067
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Individual and Collective Graph Mining影響因子(影響力)




書目名稱Individual and Collective Graph Mining影響因子(影響力)學(xué)科排名




書目名稱Individual and Collective Graph Mining網(wǎng)絡(luò)公開(kāi)度




書目名稱Individual and Collective Graph Mining網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Individual and Collective Graph Mining被引頻次




書目名稱Individual and Collective Graph Mining被引頻次學(xué)科排名




書目名稱Individual and Collective Graph Mining年度引用




書目名稱Individual and Collective Graph Mining年度引用學(xué)科排名




書目名稱Individual and Collective Graph Mining讀者反饋




書目名稱Individual and Collective Graph Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:27:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:48:11 | 只看該作者
地板
發(fā)表于 2025-3-22 07:44:14 | 只看該作者
5#
發(fā)表于 2025-3-22 10:04:04 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:45 | 只看該作者
three different machine learning models to two different miRNA-mRNA datasets, of predictions from 3 different tools: TargetScan, miRanda, and RNAhybrid. Although an experimental validation of the results is needed to better confirm the predictions, deep learning techniques achieved the best performa
7#
發(fā)表于 2025-3-22 19:28:14 | 只看該作者
8#
發(fā)表于 2025-3-22 22:24:41 | 只看該作者
three different machine learning models to two different miRNA-mRNA datasets, of predictions from 3 different tools: TargetScan, miRanda, and RNAhybrid. Although an experimental validation of the results is needed to better confirm the predictions, deep learning techniques achieved the best performa
9#
發(fā)表于 2025-3-23 03:27:34 | 只看該作者
Danai Koutra,Christos Faloutsosalso realizes a static software analysis component to collect detailed structural information and provides an interactive visualization and analysis of the functions. We use a large-scale community-based Earth System Model to demonstrate the workflow, functions and visualization of the toolkit. We a
10#
發(fā)表于 2025-3-23 07:09:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 11:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邯郸县| 宁国市| 文成县| 盐源县| 土默特左旗| 山阳县| 沧源| 五原县| 吕梁市| 远安县| 渝中区| 南宁市| 双辽市| 仙游县| 保德县| 德江县| 阳信县| 新昌县| 巴马| 罗江县| 论坛| 平南县| 安福县| 南汇区| 斗六市| 涟源市| 西安市| 靖西县| 米林县| 太和县| 高雄县| 石嘴山市| 闽清县| 黑龙江省| 霸州市| 会昌县| 顺义区| 新泰市| 庐江县| 兴宁市| 永昌县|