找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Index Theory Beyond the Fredholm Case; Alan Carey,Galina Levitina Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusi

[復(fù)制鏈接]
查看: 47558|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:31:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Index Theory Beyond the Fredholm Case
編輯Alan Carey,Galina Levitina
視頻videohttp://file.papertrans.cn/464/463427/463427.mp4
概述Provides an overview of double operator integrals‘emerging as a valuable tool in non-commutative analysis.Presents‘new material on a generalisation of the notion of spectral flow for non- Fredholm ope
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Index Theory Beyond the Fredholm Case;  Alan Carey,Galina Levitina Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusi
描述This book is about extending index theory to some examples where non-Fredholm operators arise. It focuses on one aspect of the problem of what replaces the notion of spectral flow and the Fredholm index when the operators in question have zero in their essential spectrum. Most work in this topic stems from the so-called Witten index that is discussed at length here. The new direction described in these notes is the introduction of `spectral flow beyond the Fredholm case‘..Creating a coherent picture of numerous investigations and scattered notions of the past 50 years, this work carefully introduces spectral flow, the Witten index and the spectral shift function and describes their relationship. After the introduction, Chapter 2 carefully reviews Double Operator Integrals, Chapter 3 describes the class of so-called p-relative trace class perturbations, followed by the construction of Krein‘s spectral shift function in Chapter 4. Chapter 5 reviews the analytic approach to spectral flow, culminating in Chapter 6 in the main abstract result of the book, namely the so-called principal trace formula. Chapter 7 completes the work with illustrations of the main results using explicit comp
出版日期Book 2022
關(guān)鍵詞Witten Index; Spectral Shift Function; Double Operator Integrals; Spectral Flow; Robbin-Salaman Theorem
版次1
doihttps://doi.org/10.1007/978-3-031-19436-8
isbn_softcover978-3-031-19435-1
isbn_ebook978-3-031-19436-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Index Theory Beyond the Fredholm Case影響因子(影響力)




書目名稱Index Theory Beyond the Fredholm Case影響因子(影響力)學(xué)科排名




書目名稱Index Theory Beyond the Fredholm Case網(wǎng)絡(luò)公開度




書目名稱Index Theory Beyond the Fredholm Case網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Index Theory Beyond the Fredholm Case被引頻次




書目名稱Index Theory Beyond the Fredholm Case被引頻次學(xué)科排名




書目名稱Index Theory Beyond the Fredholm Case年度引用




書目名稱Index Theory Beyond the Fredholm Case年度引用學(xué)科排名




書目名稱Index Theory Beyond the Fredholm Case讀者反饋




書目名稱Index Theory Beyond the Fredholm Case讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:20 | 只看該作者
Book 2022s the notion of spectral flow and the Fredholm index when the operators in question have zero in their essential spectrum. Most work in this topic stems from the so-called Witten index that is discussed at length here. The new direction described in these notes is the introduction of `spectral flow
板凳
發(fā)表于 2025-3-22 01:40:20 | 只看該作者
地板
發(fā)表于 2025-3-22 06:19:04 | 只看該作者
5#
發(fā)表于 2025-3-22 10:14:19 | 只看該作者
6#
發(fā)表于 2025-3-22 14:19:06 | 只看該作者
7#
發(fā)表于 2025-3-22 17:19:56 | 只看該作者
Alan Carey,Galina Levitinaon of pediatric simulation into the existing undergraduate curriculum and provide best-practice examples of how to use pediatric simulation in scaffolded learning opportunities. Given the necessity for accreditation of nursing programs by multiple agencies, the interface between regulatory bodies an
8#
發(fā)表于 2025-3-23 00:22:16 | 只看該作者
9#
發(fā)表于 2025-3-23 04:35:00 | 只看該作者
10#
發(fā)表于 2025-3-23 08:40:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昂仁县| 惠水县| 康乐县| 贡觉县| 雷山县| 长子县| 永年县| 信丰县| 五家渠市| 武强县| 乐平市| 安仁县| 边坝县| 西安市| 都兰县| 黄大仙区| 周至县| 石门县| 嵊州市| 福建省| 田林县| 荣成市| 克什克腾旗| 光泽县| 黑山县| 安新县| 牟定县| 浦江县| 渝北区| 和林格尔县| 武定县| 沁源县| 哈尔滨市| 罗城| 溧水县| 通榆县| 定陶县| 衢州市| 通榆县| 陈巴尔虎旗| 屏山县|