找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Index Analysis; Approach Theory at W R. Lowen Book 2015 Springer-Verlag London 2015 Approach Space.Ascoli Theorem.Asymptotic Center.Asympto

[復(fù)制鏈接]
樓主: TEMPO
11#
發(fā)表于 2025-3-23 13:13:27 | 只看該作者
12#
發(fā)表于 2025-3-23 15:28:51 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/i/image/463409.jpg
13#
發(fā)表于 2025-3-23 20:42:49 | 只看該作者
Approach Spaces, is that they can be determined by no less than 10 conceptually totally different but nevertheless equivalent structures. These can have a topological side and/or a metric side to them and the reason for is made clear in the second chapter.
14#
發(fā)表于 2025-3-23 23:45:30 | 只看該作者
15#
發(fā)表于 2025-3-24 03:43:26 | 只看該作者
Extensions of Spaces and Morphisms, completion and a notion of compactification, especially for uniform approach spaces. Further we also consider a completion for uniform gauge spaces. All these extensions turn out to be epireflections in their respective settings and hence also give rise to natural extensions of morphisms.
16#
發(fā)表于 2025-3-24 07:07:16 | 只看該作者
Approach Theory Meets Functional Analysis,tructures and how using index analysis, this allows to obtain quantified results of which several classical results are simple corollaries. In a second part we see that the construction of the weak and weak* approach structures on normed spaces fits into the wider picture of what we call approach vector spaces and locally convex approach spaces.
17#
發(fā)表于 2025-3-24 14:42:14 | 只看該作者
Approach Theory Meets Hyperspaces,l quantification of the Wijsman topology, in the second section we study the proximal topologies and in the last example, we study a quantified version of the Vietoris structure in the more general setup of closed sets in an arbitrary approach space.
18#
發(fā)表于 2025-3-24 16:16:41 | 只看該作者
978-1-4471-7266-6Springer-Verlag London 2015
19#
發(fā)表于 2025-3-24 19:05:58 | 只看該作者
20#
發(fā)表于 2025-3-25 02:50:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 21:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘潭县| 巴彦县| 衢州市| 信阳市| 平江县| 沅江市| 余江县| 斗六市| 临泽县| 镇平县| 五大连池市| 三明市| 大名县| 临漳县| 乡宁县| 阆中市| 青岛市| 兴和县| 宝山区| 明光市| 临沭县| 攀枝花市| 大庆市| 从化市| 达州市| 长寿区| 旬阳县| 崇义县| 松原市| 宿迁市| 黑河市| 尉犁县| 龙里县| 凤山县| 孝昌县| 肥乡县| 琼海市| 密山市| 桃源县| 黄大仙区| 云安县|