找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inclusion Methods for Nonlinear Problems; With Applications in Jürgen Herzberger Conference proceedings 2003 Springer-Verlag/Wien 2003 algo

[復制鏈接]
樓主: Grievous
51#
發(fā)表于 2025-3-30 09:05:51 | 只看該作者
,Schr?der-like Methods for the Simultaneous Inclusion of Polynomial Zeros,omplex arithmetic. These methods are based on the fundamental work of Gargantini and Henrici [7] and belong to the class of the most efficient inclusion methods. Apart from a review of the existing methods of Schr?der’s type, together with their convergence properties, a new, accelerated method in s
52#
發(fā)表于 2025-3-30 13:03:39 | 只看該作者
,Interval Root-finding Methods of Laguerre’s Type*,ed in complex circular arithmetic and have the convergence order > 4. The proposed algorithms possess a great computational efficiency since the acceleration of the convergence is attained with few additional calculations. High convergence speed is demonstrated on numerical examples.
53#
發(fā)表于 2025-3-30 20:10:14 | 只看該作者
54#
發(fā)表于 2025-3-30 23:23:33 | 只看該作者
55#
發(fā)表于 2025-3-31 03:37:00 | 只看該作者
978-3-211-83852-5Springer-Verlag/Wien 2003
56#
發(fā)表于 2025-3-31 06:29:11 | 只看該作者
Inclusion Methods for Nonlinear Problems978-3-7091-6033-6Series ISSN 0344-8029
57#
發(fā)表于 2025-3-31 11:29:05 | 只看該作者
https://doi.org/10.1007/978-3-7091-6033-6algorithm; algorithms; applied mathematics; computer applications; numerical mathematics; operator; scient
58#
發(fā)表于 2025-3-31 14:57:30 | 只看該作者
59#
發(fā)表于 2025-3-31 21:01:59 | 只看該作者
60#
發(fā)表于 2025-3-31 21:45:53 | 只看該作者
Quadratic Convergence of Scaled Iterates by Kogbetliantz Method,trices so that diagonal elements are ones. The result is obtained for a scaled diagonally dominant complex triangular matrix with multiple singular values. The estimate depends on the relative separation of the singular values.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 11:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广州市| 萍乡市| 清水县| 靖宇县| 乐业县| 太白县| 黄石市| 尚义县| 文昌市| 南乐县| 长沙市| 绥滨县| 津南区| 长葛市| 合川市| 连山| 年辖:市辖区| 龙州县| 隆化县| 南城县| 油尖旺区| 越西县| 宁阳县| 五峰| 句容市| 府谷县| 义马市| 宁津县| 临朐县| 佛坪县| 呼玛县| 湘潭县| 宝丰县| 博湖县| 忻州市| 宝清县| 四平市| 泉州市| 确山县| 宁都县| 曲靖市|