找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands; Martin Pfanne Book 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 珍愛
11#
發(fā)表于 2025-3-23 11:48:54 | 只看該作者
12#
發(fā)表于 2025-3-23 14:47:19 | 只看該作者
978-3-031-06969-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
13#
發(fā)表于 2025-3-23 20:49:36 | 只看該作者
In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands978-3-031-06967-3Series ISSN 1610-7438 Series E-ISSN 1610-742X
14#
發(fā)表于 2025-3-24 00:31:41 | 只看該作者
Martin PfannePresents state of the art in model-based dexterous manipulation with robotic hands.Is tested in challenging real-world manipulation scenarios, using one of the most advanced robotic hand systems.Intro
15#
發(fā)表于 2025-3-24 03:37:31 | 只看該作者
16#
發(fā)表于 2025-3-24 09:10:00 | 只看該作者
17#
發(fā)表于 2025-3-24 11:44:41 | 只看該作者
Grasp Modeling,This work is concerned with the development of methods for the localization and control of manipulated objects. However, the discussion of the proposed algorithms first requires a common model of the hand-object system, on which both components can be built. This chapter presents the utilized grasp model.
18#
發(fā)表于 2025-3-24 18:25:04 | 只看該作者
Grasp State Estimation,This chapter introduces the proposed method for the estimation of the grasp state of a manipulated object. It combines different sensor modalities in order to provide a robust estimate of the object pose, contact configuration and joint position errors.
19#
發(fā)表于 2025-3-24 20:57:04 | 只看該作者
Impedance-Based Object Control,Enabled by the grasp state estimation method, the developed in-hand object controller is presented in this chapter. The impedance-based method allows the compliant positioning of a grasped object inside of the hand, while at the same time regulating the internal forces on the object.
20#
發(fā)表于 2025-3-25 01:55:59 | 只看該作者
Conclusion,In this book, the main algorithmic components of a model-based dexterous manipulation framework were presented. Novel approaches for the grasp state estimation and in-hand object control were developed and validated in a range of real-world experiments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿泉市| 浦东新区| 林口县| 连州市| 高青县| 霍城县| 武乡县| 麻城市| 库尔勒市| 金沙县| 鞍山市| 武强县| 富平县| 武宁县| 南宁市| 红原县| 灯塔市| 义马市| 武汉市| 顺平县| 盖州市| 富锦市| 车险| 崇州市| 常德市| 平泉县| 清徐县| 海晏县| 彝良县| 共和县| 建宁县| 富蕴县| 蒙阴县| 新疆| 濉溪县| 托克逊县| 上饶县| 茶陵县| 梁平县| 南丰县| 宜良县|