找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: In the Tradition of Thurston III; Geometry and Dynamic Ken’ichi Ohshika,Athanase Papadopoulos Book 2024 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
查看: 23096|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:48:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱In the Tradition of Thurston III
副標(biāo)題Geometry and Dynamic
編輯Ken’ichi Ohshika,Athanase Papadopoulos
視頻videohttp://file.papertrans.cn/464/463121/463121.mp4
概述Contains comprehensive surveys on some of the most active research topic in mathematics.Features articles by well-known researchers in geometry, topology, dynamics and geometric group theory.Reveals t
圖書封面Titlebook: In the Tradition of Thurston III; Geometry and Dynamic Ken’ichi Ohshika,Athanase Papadopoulos Book 2024 The Editor(s) (if applicable) and T
描述.William Thurston’s ideas have altered the course of twentieth century mathematics, and they continue to have a significant influence on succeeding generations of mathematicians. ?The purpose of the present volume and of the other volumes in the same series is to provide a collection of articles that allows the reader to learn the important aspects of Thurston’s heritage. The topics covered in this volume include Kleinian groups, holomorphic motions, earthquakes from the Anti-de Sitter point of view, the Thurston ?and Weil–Petersson metrics on Teichmüller space, 3-manifolds, geometric structures, dynamics on surfaces, homeomorphism groups of 2-manifolds and the theory of orbifolds..
出版日期Book 2024
關(guān)鍵詞hyperbolic geometry; M?bius structures; hyperbolic ends; cone 3-manifolds; Thurston‘s norm; group actions
版次1
doihttps://doi.org/10.1007/978-3-031-43502-7
isbn_softcover978-3-031-43504-1
isbn_ebook978-3-031-43502-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱In the Tradition of Thurston III影響因子(影響力)




書目名稱In the Tradition of Thurston III影響因子(影響力)學(xué)科排名




書目名稱In the Tradition of Thurston III網(wǎng)絡(luò)公開(kāi)度




書目名稱In the Tradition of Thurston III網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱In the Tradition of Thurston III被引頻次




書目名稱In the Tradition of Thurston III被引頻次學(xué)科排名




書目名稱In the Tradition of Thurston III年度引用




書目名稱In the Tradition of Thurston III年度引用學(xué)科排名




書目名稱In the Tradition of Thurston III讀者反饋




書目名稱In the Tradition of Thurston III讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:18:30 | 只看該作者
Geometric Structures in Topology, Geometry, Global Analysis and Dynamics,espect to the following problems: (1) The existence of maps of non-zero degree (domination relation or Gromov’s order); (2) The Gromov-Thurston monotonicity problem for numerical homotopy invariants with respect to the domination relation; (3) The existence of Anosov diffeomorphisms (Anosov-Smale conjecture).
地板
發(fā)表于 2025-3-22 07:41:56 | 只看該作者
Orbifolds and the Modular Curve,of view on the subject (discrete groups acting properly and effectively on differentiable manifolds), the construction of the modular orbi-curve and its universal family of elliptic curves ends up requiring a bit more technology, in order to allow for non-effective actions.
5#
發(fā)表于 2025-3-22 09:47:16 | 只看該作者
,Some Footnotes on Thurston’s Notes ,perbolic geometry, geometric structures, volumes of hyperbolic polyhedra and the so-called Koebe–Andreev–Thurston theorem. I discuss in particular some works of Lobachevsky, Andreev and Milnor, with an excursus in Dante’s cosmology, based on the insight of Pavel Florensky.
6#
發(fā)表于 2025-3-22 13:45:12 | 只看該作者
https://doi.org/10.1007/978-3-031-43502-7hyperbolic geometry; M?bius structures; hyperbolic ends; cone 3-manifolds; Thurston‘s norm; group actions
7#
發(fā)表于 2025-3-22 17:07:49 | 只看該作者
Ken’ichi Ohshika,Athanase PapadopoulosContains comprehensive surveys on some of the most active research topic in mathematics.Features articles by well-known researchers in geometry, topology, dynamics and geometric group theory.Reveals t
8#
發(fā)表于 2025-3-22 23:58:01 | 只看該作者
http://image.papertrans.cn/i/image/463121.jpg
9#
發(fā)表于 2025-3-23 01:39:52 | 只看該作者
978-3-031-43504-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
10#
發(fā)表于 2025-3-23 07:44:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资兴市| 陇南市| 拉萨市| 敦化市| 绥宁县| 诸城市| 麻栗坡县| 台东市| 奉新县| 西宁市| 桐乡市| 烟台市| 仙桃市| 宁夏| 五寨县| 呼玛县| 桦南县| 兴化市| 瓦房店市| 库伦旗| 页游| 台南市| 囊谦县| 普格县| 陆河县| 镇赉县| 威信县| 秭归县| 于都县| 中阳县| 色达县| 淮阳县| 珲春市| 玉门市| 怀安县| 丹江口市| 富民县| 平湖市| 鹤壁市| 合作市| 娱乐|