找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: In Defense of Polemics; Ruth Amossy Book 2021 Springer Nature Switzerland AG 2021 Polemical Discourse.Public Controversy.Public Sphere.Plu

[復制鏈接]
樓主: Clientele
31#
發(fā)表于 2025-3-26 23:44:27 | 只看該作者
32#
發(fā)表于 2025-3-27 02:42:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:33:07 | 只看該作者
34#
發(fā)表于 2025-3-27 10:58:07 | 只看該作者
Ruth Amossytable cardinal number which is less than or equal to . that describes a combinatorial or analytical property of the continuum. Like the power of the continuum itself, the size of a cardinal characteristic is often independent from .. However, some restrictions on possible sizes follow from ., and we
35#
發(fā)表于 2025-3-27 16:30:48 | 只看該作者
Ruth Amossyw of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice
36#
發(fā)表于 2025-3-27 21:49:22 | 只看該作者
37#
發(fā)表于 2025-3-27 23:57:22 | 只看該作者
38#
發(fā)表于 2025-3-28 03:31:54 | 只看該作者
39#
發(fā)表于 2025-3-28 06:55:48 | 只看該作者
countable cardinal number which is less than or equal to . that describes a combinatorial or analytical property of the continuum. Like the power of the continuum itself, the size of a cardinal characteristic is often independent from .. However, some restrictions on possible sizes follow from ., an
40#
發(fā)表于 2025-3-28 11:06:22 | 只看該作者
Ruth Amossycountable cardinal number which is less than or equal to . that describes a combinatorial or analytical property of the continuum. Like the power of the continuum itself, the size of a cardinal characteristic is often independent from .. However, some restrictions on possible sizes follow from ., an
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
玛多县| 漳州市| 眉山市| 牙克石市| 广河县| 墨竹工卡县| 包头市| 铜陵市| 华池县| 托里县| 常州市| 盖州市| 阜康市| 若羌县| 甘泉县| 文登市| 金华市| 达拉特旗| 晋城| 辽阳县| 左权县| 和顺县| 永福县| 华蓥市| 大港区| 酒泉市| 黄石市| 白水县| 滕州市| 抚顺市| 太和县| 上虞市| 丰顺县| 新乡市| 元朗区| 长子县| 富源县| 合作市| 洪湖市| 忻城县| 临海市|