找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Important Developments in Soliton Theory; A. S. Fokas,V. E. Zakharov Book 1993 Springer-Verlag Berlin Heidelberg 1993 Eigenvalue.Hamiltoni

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:54:00 | 只看該作者
Differential Geometry and Hydrodynamics of Soliton Lattices.Dubrovin, I.M. Krichever, S.P. Tsarev (and the present author). More details may be found in the survey article [.]. Modern needs in the large new classes of hydrodynamic type systems appear in connection with very interesting asymptotic method - so called “nonlinear analog of WKB-method”, method o
22#
發(fā)表于 2025-3-25 08:32:15 | 只看該作者
Bi-Hamiltonian Structures and Integrabilityhe works of Zakharov and Faddeev [1] and Gardner [2] who interpreted the KortewegdeVries (KdV) equation . as a completely integrable Hamiltonian system in an infinite dimensional phase space (the relevant Hamiltonian operator is ?.). Furthermore, it was shown in [1], that the inverse spectral method
23#
發(fā)表于 2025-3-25 12:07:41 | 只看該作者
24#
發(fā)表于 2025-3-25 17:02:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:41:39 | 只看該作者
26#
發(fā)表于 2025-3-26 01:04:32 | 只看該作者
27#
發(fā)表于 2025-3-26 08:07:54 | 只看該作者
The Cauchy Problem for Doubly Periodic Solutions of KP-II Equationheory of integrable equations the algebraic-geometrical methods provide a construction of the periodic and quasi-periodic solutions which can be written exactly in terms of the theta-functions of auxiliary Riemann surfaces.
28#
發(fā)表于 2025-3-26 12:30:09 | 只看該作者
29#
發(fā)表于 2025-3-26 14:46:41 | 只看該作者
Springer Series in Nonlinear Dynamicshttp://image.papertrans.cn/i/image/462710.jpg
30#
發(fā)表于 2025-3-26 18:17:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 19:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫溪县| 利川市| 陈巴尔虎旗| 晋江市| 凤冈县| 牟定县| 漯河市| 鸡西市| 康保县| 米林县| 井冈山市| 绥芬河市| 孟州市| 常熟市| 斗六市| 五原县| 永昌县| 丹阳市| 六盘水市| 长岛县| 浦城县| 房产| 黎川县| 靖州| 松滋市| 博客| 博客| 南安市| 项城市| 北碚区| 邯郸市| 德兴市| 丹阳市| 温州市| 常州市| 翼城县| 吉林市| 永修县| 柘城县| 彭水| 迁安市|