找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Implementing Machine Learning for Finance; A Systematic Approac Tshepo Chris Nokeri Book 2021 Tshepo Chris Nokeri 2021 Machine Learning.Dee

[復(fù)制鏈接]
查看: 31501|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:52:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Implementing Machine Learning for Finance
副標(biāo)題A Systematic Approac
編輯Tshepo Chris Nokeri
視頻videohttp://file.papertrans.cn/463/462635/462635.mp4
概述Bridges the gap between finance and data science by presenting a systematic method for structuring, analyzing, and optimizing an investment portfolio and its underlying asset classes.Covers supervised
圖書封面Titlebook: Implementing Machine Learning for Finance; A Systematic Approac Tshepo Chris Nokeri Book 2021 Tshepo Chris Nokeri 2021 Machine Learning.Dee
描述Bring together machine learning (ML) and deep learning (DL) in financial trading, with an emphasis on investment management. This book explains systematic approaches to investment portfolio management, risk analysis, and performance analysis, including predictive analytics using data science procedures..The book introduces pattern recognition and future price forecasting that exerts effects on time series analysis models, such as the Autoregressive Integrated Moving Average (ARIMA) model, Seasonal ARIMA (SARIMA) model, and Additive model, and it covers the Least Squares model and the Long Short-Term Memory (LSTM) model. It presents hidden pattern recognition and market regime prediction applying the Gaussian Hidden Markov Model. The book covers the practical application of the K-Means model in stock clustering. It establishes the practical application of the Variance-Covariance method and Simulation method (using Monte Carlo Simulation) for value at risk estimation. It also includes market direction classification using both the Logistic classifier and the Multilayer Perceptron classifier. Finally, the book presents performance and risk analysis for investment portfolios..By the en
出版日期Book 2021
關(guān)鍵詞Machine Learning; Deep Learning; Python; Finance; Investment Portfolio; Investment Risk Analysis; Stock Ma
版次1
doihttps://doi.org/10.1007/978-1-4842-7110-0
isbn_softcover978-1-4842-7109-4
isbn_ebook978-1-4842-7110-0
copyrightTshepo Chris Nokeri 2021
The information of publication is updating

書目名稱Implementing Machine Learning for Finance影響因子(影響力)




書目名稱Implementing Machine Learning for Finance影響因子(影響力)學(xué)科排名




書目名稱Implementing Machine Learning for Finance網(wǎng)絡(luò)公開度




書目名稱Implementing Machine Learning for Finance網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Implementing Machine Learning for Finance被引頻次




書目名稱Implementing Machine Learning for Finance被引頻次學(xué)科排名




書目名稱Implementing Machine Learning for Finance年度引用




書目名稱Implementing Machine Learning for Finance年度引用學(xué)科排名




書目名稱Implementing Machine Learning for Finance讀者反饋




書目名稱Implementing Machine Learning for Finance讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:08:14 | 只看該作者
Univariate Time Series Using Recurrent Neural Nets,zers. Second, it discusses the sequence data problem and how a recurrent neural network (RNN) solves it. Third, the chapter presents a way of designing, developing, and testing the most popular RNN, which is the long short-term memory (LSTM) model. We use the Keras framework for rapid prototyping an
地板
發(fā)表于 2025-3-22 06:04:35 | 只看該作者
5#
發(fā)表于 2025-3-22 09:14:14 | 只看該作者
Stock Clustering,ers are not. High-risk assets are those whose prices change drastically in short periods. To secure capital, investors may select groups of stocks, rather than investing in a single stock or class of stocks. Given that there are many stocks to choose from, investors ordinarily find it arduous to sin
6#
發(fā)表于 2025-3-22 14:19:06 | 只看該作者
7#
發(fā)表于 2025-3-22 18:24:17 | 只看該作者
8#
發(fā)表于 2025-3-23 00:41:05 | 只看該作者
Market Trend Classification Using ML and DL,he . to predict the possible direction of the market. This chapter presents the nonparametric (or nonlinear) method, also called the .. This prevalent method operates on independent variables and triggers a bounded value. It is suitable when dealing with a categorical dependent variable (a dependent
9#
發(fā)表于 2025-3-23 02:53:47 | 只看該作者
Investment Portfolio and Risk Analysis, several machine learning models and deep learning models for robust investment management decision-making. Throughout the book, we alluded to investing in markets involving risk. In this chapter, we present the primitives of investment risk and performance analysis using the Pyfolio package. To ins
10#
發(fā)表于 2025-3-23 08:59:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台州市| 文昌市| 长海县| 大连市| 汶上县| 清河县| 沾益县| 宁德市| 华容县| 杨浦区| 华亭县| 汶上县| 永善县| 洛宁县| 泸西县| 武城县| 出国| 舞钢市| 田东县| 乌拉特后旗| 漯河市| 连山| 舒城县| 岐山县| 河南省| 定南县| 衡阳市| 子长县| 安平县| 大石桥市| 永德县| 交口县| 潜山县| 梁平县| 温宿县| 泰安市| 霍林郭勒市| 吉安县| 石景山区| 辽宁省| 奈曼旗|