找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image and Video Technology; PSIVT 2019 Internati Joel Janek Dabrowski,Ashfaqur Rahman,Manoranjan Pa Conference proceedings 2020 Springer Na

[復(fù)制鏈接]
樓主: 小故障
31#
發(fā)表于 2025-3-27 00:47:25 | 只看該作者
Detecting Global Exam Events in Invigilation Videos Using 3D Convolutional Neural Network videos are defined according to the human activity performed at a certain phase in the entire exam process. Unlike general event detection which involves different scenes, global event detection focuses on differentiating different collective activities in the exam room ambiance. The challenges lie
32#
發(fā)表于 2025-3-27 05:10:27 | 只看該作者
Spatial Hierarchical Analysis Deep Neural Network for RGB-D Object Recognitionhieved on multimodal RGB-D images. The latter can play an important role in several computer vision and robotics applications. In this paper, we present spatial hierarchical analysis deep neural network, called ShaNet, for RGB-D object recognition. Our network consists of convolutional neural networ
33#
發(fā)表于 2025-3-27 08:17:00 | 只看該作者
34#
發(fā)表于 2025-3-27 10:55:58 | 只看該作者
0302-9743 apers presented were carefully selected from 26 submissions. The papers cover the full range of state-of-the-art research in image and video technology with topics ranging from well-established areas to novel current trends..978-3-030-39769-2978-3-030-39770-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
35#
發(fā)表于 2025-3-27 17:41:55 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:33 | 只看該作者
37#
發(fā)表于 2025-3-28 01:49:00 | 只看該作者
Detecting Global Exam Events in Invigilation Videos Using 3D Convolutional Neural Networkatures and its effectiveness in detecting video events. Experiment results show the designed 3D convolutional neural network achieves an accuracy of its capability of 93.94% in detecting the global exam events, which demonstrates the effectiveness of our model.
38#
發(fā)表于 2025-3-28 04:12:13 | 只看該作者
Spatial Hierarchical Analysis Deep Neural Network for RGB-D Object Recognitioned model has been tested on two different publicly available RGB-D datasets including Washington RGB-D and 2D3D object dataset. Our experimental results show that the proposed deep neural network achieves superior performance compared to existing RGB-D object recognition methods.
39#
發(fā)表于 2025-3-28 07:20:09 | 只看該作者
40#
發(fā)表于 2025-3-28 13:21:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛山市| 禄丰县| 蒙阴县| 密山市| 江陵县| 黄骅市| 大英县| 逊克县| 郎溪县| 河北省| 新巴尔虎左旗| 桑日县| 英吉沙县| 方山县| 时尚| 保德县| 阿克陶县| 怀安县| 台南县| 沅陵县| 富宁县| 丽水市| 巴塘县| 嘉义县| 东方市| 兴义市| 邵武市| 呼伦贝尔市| 毕节市| 思南县| 东丰县| 五河县| 绍兴市| 柳河县| 五大连池市| 三亚市| 都江堰市| 江津市| 婺源县| 沙湾县| 民权县|