找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image and Graphics; 9th International Co Yao Zhao,Xiangwei Kong,David Taubman Conference proceedings 2017 Springer Nature Switzerland AG 20

[復制鏈接]
樓主: Affordable
11#
發(fā)表于 2025-3-23 09:57:44 | 只看該作者
Jiayu Dong,Huicheng Zheng,Lina Liannd self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the propos
12#
發(fā)表于 2025-3-23 17:35:08 | 只看該作者
Long Zhang,Jieyu Zhao,Xiangfu Shi,Xulun Yeith the NER model to fuse both contexts and dictionary knowledge into NER. Extensive experiments on the CoNLL-2003 benchmark dataset validate the effectiveness of our approach in exploiting entity dictionaries to improve the performance of various NER models.
13#
發(fā)表于 2025-3-23 21:24:45 | 只看該作者
14#
發(fā)表于 2025-3-24 01:53:43 | 只看該作者
Yang Yu,Zhiqiang Gong,Ping Zhong,Jiaxin Shannd self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the propos
15#
發(fā)表于 2025-3-24 02:56:00 | 只看該作者
16#
發(fā)表于 2025-3-24 09:21:15 | 只看該作者
17#
發(fā)表于 2025-3-24 11:22:01 | 只看該作者
Jing Wang,Hong Zhu,Shan Xue,Jing Shipairs. In the interaction layer, we initially fuse the information of the sentence pairs to obtain low-level semantic information; at the same time, we use the bi-directional attention in the machine reading comprehension model and self-attention to obtain the high-level semantic information. We use
18#
發(fā)表于 2025-3-24 16:37:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:27:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:48:24 | 只看該作者
Wei Hu,Hongyu Qi,Zhenbing Zhao,Leilei Xuction strategies to explore its effect. We conduct experiments on seven Semantic Textual Similarity (STS) tasks. The experimental results show that our ConIsI models based on . and . achieve state-of-the-art performance, substantially outperforming previous best models SimCSE-. and SimCSE-. by 2.05%
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 10:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
惠水县| 南丹县| 广宗县| 柳州市| 武强县| 盐津县| 武陟县| 墨江| 馆陶县| 呼伦贝尔市| 深圳市| 来安县| 黑河市| 辰溪县| 延川县| 宝鸡市| 黑河市| 大邑县| 华蓥市| 察哈| 光泽县| 龙川县| 革吉县| 连南| 吉林省| 荆州市| 嘉义县| 多伦县| 无锡市| 厦门市| 九台市| 盖州市| 镇江市| 沭阳县| 青阳县| 上犹县| 红安县| 广丰县| 庆元县| 松阳县| 油尖旺区|