找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image and Graphics; 9th International Co Yao Zhao,Xiangwei Kong,David Taubman Conference proceedings 2017 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: Affordable
11#
發(fā)表于 2025-3-23 09:57:44 | 只看該作者
Jiayu Dong,Huicheng Zheng,Lina Liannd self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the propos
12#
發(fā)表于 2025-3-23 17:35:08 | 只看該作者
Long Zhang,Jieyu Zhao,Xiangfu Shi,Xulun Yeith the NER model to fuse both contexts and dictionary knowledge into NER. Extensive experiments on the CoNLL-2003 benchmark dataset validate the effectiveness of our approach in exploiting entity dictionaries to improve the performance of various NER models.
13#
發(fā)表于 2025-3-23 21:24:45 | 只看該作者
14#
發(fā)表于 2025-3-24 01:53:43 | 只看該作者
Yang Yu,Zhiqiang Gong,Ping Zhong,Jiaxin Shannd self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the propos
15#
發(fā)表于 2025-3-24 02:56:00 | 只看該作者
16#
發(fā)表于 2025-3-24 09:21:15 | 只看該作者
17#
發(fā)表于 2025-3-24 11:22:01 | 只看該作者
Jing Wang,Hong Zhu,Shan Xue,Jing Shipairs. In the interaction layer, we initially fuse the information of the sentence pairs to obtain low-level semantic information; at the same time, we use the bi-directional attention in the machine reading comprehension model and self-attention to obtain the high-level semantic information. We use
18#
發(fā)表于 2025-3-24 16:37:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:27:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:48:24 | 只看該作者
Wei Hu,Hongyu Qi,Zhenbing Zhao,Leilei Xuction strategies to explore its effect. We conduct experiments on seven Semantic Textual Similarity (STS) tasks. The experimental results show that our ConIsI models based on . and . achieve state-of-the-art performance, substantially outperforming previous best models SimCSE-. and SimCSE-. by 2.05%
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 11:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
敖汉旗| 贵德县| 惠东县| 西乌珠穆沁旗| 辽阳县| 武夷山市| 台安县| 郸城县| 汝州市| 白银市| 酉阳| 怀集县| 晋江市| 中超| 邵阳县| 绥江县| 汤阴县| 乌审旗| 名山县| 诏安县| 平谷区| 社旗县| 呼图壁县| 华池县| 莆田市| 略阳县| 龙井市| 南溪县| 岳普湖县| 开鲁县| 衡南县| 余江县| 凤冈县| 军事| 曲阳县| 嵊州市| 利川市| 绥中县| 延边| 临湘市| 贵州省|