找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Image and Graphics; 12th International C Huchuan Lu,Wanli Ouyang,Min Xu Conference proceedings 2023 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
樓主: Suture
41#
發(fā)表于 2025-3-28 17:46:05 | 只看該作者
GLM: A Model Based on?Global-Local Joint Learning for?Emotion Recognition from?Gaits Using Dual-Strepture global and local characteristics. To enhance the features and improve recognition accuracy, we further introduce an attention-based feature fusion module. Through experiments on benchmark datasets, our proposed model achieves high accuracy in recognizing emotions from gait data.
42#
發(fā)表于 2025-3-28 21:34:31 | 只看該作者
43#
發(fā)表于 2025-3-29 02:09:03 | 只看該作者
Ar3dHands: A Dataset and?Baseline for?Real-Time 3D Hand Pose Estimation from?Binocular Distorted Imaes. Evaluation shows that our method can achieve state-of-the-art results on several datasets with lower mean 2D end point error and can realize real-time performance on embedded devices without GPUs.
44#
發(fā)表于 2025-3-29 04:45:42 | 只看該作者
0302-9743 mage and Graphics, ICIG 2023, held in Nanjing, China, during September 22–24, 2023..The 166 papers presented in the proceedings set were carefully reviewed and selected from 409 submissions. They were organized in topical sections as follows: computer vision and pattern recognition; computer graphic
45#
發(fā)表于 2025-3-29 09:12:46 | 只看該作者
Attention-Based Global-Local Graph Learning for?Dynamic Facial Expression Recognition information, we construct a local spatial-temporal graph (LSTG) by extracting intermediate CNN features of local regions based on landmark-guided attention and defining their geometric relationships. We utilize topology-learnable ST-GCNs to exploit the local dynamics and implicit relations. Finally
46#
發(fā)表于 2025-3-29 13:53:05 | 只看該作者
HQFS: High-Quality Feature Selection for?Accurate Change Detection& .. The former focuses on extracting features from images, while the latter leverages attention mechanisms and pyramid fusion techniques to generate accurate change predictions. Comprehensive experiments on three benchmark datasets demonstrate the superiority of our method over seven state-of-the-a
47#
發(fā)表于 2025-3-29 16:06:26 | 只看該作者
Video-Based Person Re-Identification with?Long Short-Term Representation Learningd-play and can be easily inserted into existing networks for efficient feature learning. As a result, they significantly improve the feature representation ability for V-ReID. Extensive experiments on three widely used benchmarks show that our proposed approach can deliver better performances than m
48#
發(fā)表于 2025-3-29 20:42:27 | 只看該作者
49#
發(fā)表于 2025-3-30 02:11:02 | 只看該作者
50#
發(fā)表于 2025-3-30 07:54:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 12:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浮山县| 平乐县| 丹棱县| 舒兰市| 永丰县| 开江县| 武宣县| 垫江县| 平乡县| 横峰县| 平度市| 尉氏县| 义乌市| 石泉县| 错那县| 乐山市| 巨野县| 哈尔滨市| 大石桥市| 麻栗坡县| 洱源县| 浠水县| 怀来县| 曲松县| 西乌珠穆沁旗| 澄江县| 赣州市| 苗栗市| 清新县| 平阳县| 石阡县| 顺平县| 襄城县| 灵山县| 金塔县| 北京市| 汤原县| 微山县| 临安市| 密山市| 广饶县|