找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Understanding using Sparse Representations; Jayaraman J. Tiagarajan,Karthikeyan Natesan Ramamu Book 2014 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: fibrous-plaque
21#
發(fā)表于 2025-3-25 06:20:39 | 只看該作者
Image Understanding using Sparse Representations978-3-031-02250-0Series ISSN 1559-8136 Series E-ISSN 1559-8144
22#
發(fā)表于 2025-3-25 09:09:41 | 只看該作者
23#
發(fā)表于 2025-3-25 14:25:06 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:05 | 只看該作者
Book 2014ponent in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the spa
25#
發(fā)表于 2025-3-25 22:40:54 | 只看該作者
Sparse Models in Recognition,nce, adapting this representative model to perform discriminative tasks requires the incorporation of supervisory information into the sparse coding and dictionary learning problems. By introducing the prior knowledge on the sparsity of signals into the traditional machine learning algorithms, novel discriminative frameworks can be developed.
26#
發(fā)表于 2025-3-26 02:24:13 | 只看該作者
Dictionary Learning: Theory and Algorithms,are learned directly from the data result in an improved performance compared to both pre-defined as well as tuned dictionaries. This chapter will focus exclusively on learned dictionaries and their applications in various image processing tasks.
27#
發(fā)表于 2025-3-26 06:57:35 | 只看該作者
28#
發(fā)表于 2025-3-26 11:51:40 | 只看該作者
1559-8136 ortant component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiti
29#
發(fā)表于 2025-3-26 16:02:58 | 只看該作者
30#
發(fā)表于 2025-3-26 17:01:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 04:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中方县| 台北市| 措勤县| 望都县| 嘉黎县| 剑阁县| 福建省| 射洪县| 灌云县| 鸡西市| 遵义市| 五华县| 隆化县| 新邵县| 南部县| 乌拉特前旗| 文安县| 钟山县| 正定县| 武陟县| 民乐县| 海门市| 平原县| 来宾市| 鹤庆县| 丹凤县| 库伦旗| 珲春市| 大姚县| 竹溪县| 商洛市| 仙居县| 牙克石市| 嘉荫县| 大冶市| 大洼县| 长春市| 桃园市| 竹北市| 华阴市| 如皋市|