找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis and Processing – ICIAP 2022; 21st International C Stan Sclaroff,Cosimo Distante,Federico Tombari Conference proceedings 2022

[復(fù)制鏈接]
查看: 46594|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:04:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Image Analysis and Processing – ICIAP 2022
副標(biāo)題21st International C
編輯Stan Sclaroff,Cosimo Distante,Federico Tombari
視頻videohttp://file.papertrans.cn/462/461373/461373.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Image Analysis and Processing – ICIAP 2022; 21st International C Stan Sclaroff,Cosimo Distante,Federico Tombari Conference proceedings 2022
描述The proceedings set LNCS 13231, 13232, and 13233 constitutes the refereed proceedings of the 21st International Conference on Image Analysis and Processing, ICIAP 2022, which was held during May 23-27, 2022, in Lecce, Italy,.The 168 papers included in the proceedings were carefully reviewed and selected from 307 submissions. They deal with video analysis and understanding; pattern recognition and machine learning; deep learning; multi-view geometry and 3D computer vision; image analysis, detection and recognition; multimedia; biomedical and assistive technology; digital forensics and biometrics; image processing for cultural heritage; robot vision; etc. .
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; communication systems; computer networks; computer vision; education; Human-Comp
版次1
doihttps://doi.org/10.1007/978-3-031-06433-3
isbn_softcover978-3-031-06432-6
isbn_ebook978-3-031-06433-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Image Analysis and Processing – ICIAP 2022影響因子(影響力)




書目名稱Image Analysis and Processing – ICIAP 2022影響因子(影響力)學(xué)科排名




書目名稱Image Analysis and Processing – ICIAP 2022網(wǎng)絡(luò)公開度




書目名稱Image Analysis and Processing – ICIAP 2022網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Image Analysis and Processing – ICIAP 2022被引頻次




書目名稱Image Analysis and Processing – ICIAP 2022被引頻次學(xué)科排名




書目名稱Image Analysis and Processing – ICIAP 2022年度引用




書目名稱Image Analysis and Processing – ICIAP 2022年度引用學(xué)科排名




書目名稱Image Analysis and Processing – ICIAP 2022讀者反饋




書目名稱Image Analysis and Processing – ICIAP 2022讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:40:17 | 只看該作者
Image Analysis and Processing – ICIAP 2022978-3-031-06433-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
板凳
發(fā)表于 2025-3-22 01:01:52 | 只看該作者
https://doi.org/10.1007/978-3-031-06433-3artificial intelligence; communication systems; computer networks; computer vision; education; Human-Comp
地板
發(fā)表于 2025-3-22 08:22:27 | 只看該作者
5#
發(fā)表于 2025-3-22 09:42:51 | 只看該作者
Hangul Fonts Dataset: A Hierarchical and?Compositional Dataset for?Investigating Learned Representattivations represent hierarchy and compositionality is important both for understanding deep representation learning and for applying deep networks in domains where interpretability is crucial. However, current benchmark machine learning datasets either have little hierarchical or compositional struc
6#
發(fā)表于 2025-3-22 12:57:33 | 只看該作者
Out-of-Distribution Detection Using Outlier Detection Methodsmalous input. Similarly, it was shown that feature extraction models in combination with outlier detection algorithms are well suited to detect anomalous input. We use outlier detection algorithms to detect anomalous input as reliable as specialized methods from the field of OOD. No neural network a
7#
發(fā)表于 2025-3-22 18:24:50 | 只看該作者
8#
發(fā)表于 2025-3-22 22:41:04 | 只看該作者
Computationally Efficient Rehearsal for?Online Continual Learningwhat they have already learned. Rehearsal methods offer a simple countermeasure to help avoid this catastrophic forgetting which frequently occurs in dynamic situations and is a major limitation of machine learning models. These methods continuously train neural networks using a mix of data both fro
9#
發(fā)表于 2025-3-23 03:58:44 | 只看該作者
Recurrent Vision Transformer for?Solving Visual Reasoning Problems reasoning problems. Inspired by the recent success of the Transformer network in computer vision, in this paper, we introduce the Recurrent Vision Transformer (RViT) model. Thanks to the impact of recurrent connections and spatial attention in reasoning tasks, this network achieves competitive resu
10#
發(fā)表于 2025-3-23 06:34:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
额尔古纳市| 阿鲁科尔沁旗| 汉寿县| 连云港市| 彭泽县| 和田县| 堆龙德庆县| 濉溪县| 保康县| 色达县| 三原县| 琼结县| 沾益县| 西林县| 宜阳县| 大丰市| 射阳县| 巍山| 望城县| 桂东县| 封丘县| 靖州| 通许县| 垣曲县| 元阳县| 绥芬河市| 房山区| 黑龙江省| 广丰县| 黄骅市| 桃江县| 渝北区| 化德县| 涞源县| 福安市| 内乡县| 金沙县| 宣武区| 逊克县| 桂平市| 惠来县|