找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis; 18th Scandinavian Co Joni-Kristian K?m?r?inen,Markus Koskela Conference proceedings 2013 Springer-Verlag GmbH Germany, part

[復(fù)制鏈接]
樓主: hedonist
21#
發(fā)表于 2025-3-25 04:19:26 | 只看該作者
Cascaded Random Forest for Fast Object Detectionis paper we propose a Random Forest framework which incorporates a cascade structure consisting of several stages together with a bootstrap approach. By introducing the cascade, 99% of the test images can be rejected by the first and second stage with minimal computational effort leading to a massiv
22#
發(fā)表于 2025-3-25 07:39:20 | 只看該作者
Multiplicative Updates for Learning with Stochastic Matricesnt semantic analysis, etc. In such learning problems, the learned matrices, being stochastic matrices, are non-negative and all or part of the elements sum up to one. Conventional multiplicative updates which have been widely used for nonnegative learning cannot accommodate the stochasticity constra
23#
發(fā)表于 2025-3-25 15:01:56 | 只看該作者
24#
發(fā)表于 2025-3-25 18:20:53 | 只看該作者
25#
發(fā)表于 2025-3-25 21:11:44 | 只看該作者
Continuous-Space Gaussian Process Regression and Generalized Wiener Filtering with Application to Les model. We study abstract continuous-space Gaussian regression problems where the training set covers the whole input space instead of consisting of a finite number of distinct points. The model can be used for analyzing theoretical properties of Gaussian process regressors. In this paper, we prese
26#
發(fā)表于 2025-3-26 03:58:51 | 只看該作者
Approximations of Gaussian Process Uncertainties for Visual Recognition Problemsn result. This is especially useful to select informative samples in active learning and to spot samples of previously unseen classes known as novelty detection. However, the Gaussian process framework suffers from high computational complexity leading to computation times too large for practical ap
27#
發(fā)表于 2025-3-26 07:24:58 | 只看該作者
Topology-Preserving Dimension-Reduction Methods for Image Pattern Recognitiontern recognition uses pattern recognition techniques for the classification of image data. For the numerical achievement of image pattern recognition techniques, images are sampled using an array of pixels. This sampling procedure derives vectors in a higher-dimensional metric space from image patte
28#
發(fā)表于 2025-3-26 10:03:14 | 只看該作者
Texture Description with Completed Local Quantized Patternsses random initialization in vector quantization, this leads to losing the distribution of local patterns and costing much computational time. For reducing the unnecessary computational time of initialization, we use preselected dominant patterns as the initialization. Our experimental results show
29#
發(fā)表于 2025-3-26 14:46:39 | 只看該作者
30#
發(fā)表于 2025-3-26 17:26:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 00:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大石桥市| 吉安县| 柳江县| 遵化市| 穆棱市| 正定县| 四子王旗| 内丘县| 育儿| 拉孜县| 鹿邑县| 灵璧县| 襄汾县| 泾阳县| 神农架林区| 南澳县| 湾仔区| 左权县| 探索| 祁阳县| 温州市| 准格尔旗| 巫山县| 龙游县| 喀什市| 宜丰县| 镇坪县| 萝北县| 开封市| 九寨沟县| 渑池县| 枣强县| 赣州市| 类乌齐县| 余姚市| 青神县| 凌海市| 西平县| 恩施市| 横山县| 循化|