找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis; 22nd Scandinavian Co Rikke Gade,Michael Felsberg,Joni-Kristian K?m?r?in Conference proceedings 2023 The Editor(s) (if appli

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:47:44 | 只看該作者
32#
發(fā)表于 2025-3-27 04:42:29 | 只看該作者
CHAD: Charlotte Anomaly Datasetrmine if specific frames of a video contain abnormal behaviors. However, video anomaly detection is particularly context-specific, and the availability of representative datasets heavily limits real-world accuracy. Additionally, the metrics currently reported by most state-of-the-art methods often d
33#
發(fā)表于 2025-3-27 07:04:41 | 只看該作者
iDFD: A Dataset Annotated for?Depth and?Defocusroposed to solve these two tasks separately, using Deep Learning (DL) powerful learning capability. However, when it comes to training the Deep Neural Networks (DNN) for image deblurring or Depth from Defocus (DFD), the mentioned methods are mostly based on synthetic training datasets because of the
34#
發(fā)表于 2025-3-27 13:02:18 | 只看該作者
35#
發(fā)表于 2025-3-27 15:19:44 | 只看該作者
36#
發(fā)表于 2025-3-27 18:17:11 | 只看該作者
37#
發(fā)表于 2025-3-28 00:11:10 | 只看該作者
Attention-guided Boundary Refinement on?Anchor-free Temporal Action Detectionndencies among features from different temporal locations. Additionally, based on the developed temporal attention unit, we propose an attention-guided boundary refinement module for revising action prediction results. Besides, we integrate the proposed module into a contemporary anchor-free detecto
38#
發(fā)表于 2025-3-28 03:52:48 | 只看該作者
Spatio-temporal Attention Graph Convolutions for?Skeleton-based Action Recognitionand the method has achieved excellent results recently. However, GCN-based techniques only focus on the spatial correlations between human joints and often overlook the temporal relationships. In an action sequence, the consecutive frames in a neighborhood contain similar poses and using only tempor
39#
發(fā)表于 2025-3-28 07:07:37 | 只看該作者
40#
發(fā)表于 2025-3-28 11:59:45 | 只看該作者
To Quantify an?Image Relevance Relative to?a?Target 3D Objectd be both informative and offer a relevant view of the object, .a pose that presents the essential characteristic information about the 3D object. To estimate the quality of the view, we propose to rely on repeatable, second order features, extracted with a curvilinear saliency detector, in order to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 12:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平邑县| 新乡县| 桐柏县| 嘉义市| 济源市| 宕昌县| 永春县| 根河市| 镇坪县| 团风县| 宝山区| 三都| 瓮安县| 龙山县| 太湖县| 乌拉特中旗| 高淳县| 深州市| 个旧市| 徐水县| 隆昌县| 镇沅| 泸西县| 宁城县| 灌阳县| 明光市| 佛坪县| 霍邱县| 山东| 博爱县| 桃园县| 清涧县| 若羌县| 江阴市| 磐石市| 莒南县| 于都县| 万盛区| 堆龙德庆县| 韶山市| 攀枝花市|