找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis; 22nd Scandinavian Co Rikke Gade,Michael Felsberg,Joni-Kristian K?m?r?in Conference proceedings 2023 The Editor(s) (if appli

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:47:44 | 只看該作者
32#
發(fā)表于 2025-3-27 04:42:29 | 只看該作者
CHAD: Charlotte Anomaly Datasetrmine if specific frames of a video contain abnormal behaviors. However, video anomaly detection is particularly context-specific, and the availability of representative datasets heavily limits real-world accuracy. Additionally, the metrics currently reported by most state-of-the-art methods often d
33#
發(fā)表于 2025-3-27 07:04:41 | 只看該作者
iDFD: A Dataset Annotated for?Depth and?Defocusroposed to solve these two tasks separately, using Deep Learning (DL) powerful learning capability. However, when it comes to training the Deep Neural Networks (DNN) for image deblurring or Depth from Defocus (DFD), the mentioned methods are mostly based on synthetic training datasets because of the
34#
發(fā)表于 2025-3-27 13:02:18 | 只看該作者
35#
發(fā)表于 2025-3-27 15:19:44 | 只看該作者
36#
發(fā)表于 2025-3-27 18:17:11 | 只看該作者
37#
發(fā)表于 2025-3-28 00:11:10 | 只看該作者
Attention-guided Boundary Refinement on?Anchor-free Temporal Action Detectionndencies among features from different temporal locations. Additionally, based on the developed temporal attention unit, we propose an attention-guided boundary refinement module for revising action prediction results. Besides, we integrate the proposed module into a contemporary anchor-free detecto
38#
發(fā)表于 2025-3-28 03:52:48 | 只看該作者
Spatio-temporal Attention Graph Convolutions for?Skeleton-based Action Recognitionand the method has achieved excellent results recently. However, GCN-based techniques only focus on the spatial correlations between human joints and often overlook the temporal relationships. In an action sequence, the consecutive frames in a neighborhood contain similar poses and using only tempor
39#
發(fā)表于 2025-3-28 07:07:37 | 只看該作者
40#
發(fā)表于 2025-3-28 11:59:45 | 只看該作者
To Quantify an?Image Relevance Relative to?a?Target 3D Objectd be both informative and offer a relevant view of the object, .a pose that presents the essential characteristic information about the 3D object. To estimate the quality of the view, we propose to rely on repeatable, second order features, extracted with a curvilinear saliency detector, in order to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 14:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔南| 方山县| 岑溪市| 金溪县| 芮城县| 彝良县| 满城县| 西充县| 迁西县| 墨江| 金沙县| 宜昌市| 若羌县| 平安县| 湄潭县| 汨罗市| 潞城市| 织金县| 黔西| 灌云县| 昭觉县| 会昌县| 甘孜县| 寿光市| 全州县| 玛纳斯县| 鄄城县| 体育| 曲周县| 云阳县| 读书| 柳河县| 黄石市| 乌苏市| 西乌珠穆沁旗| 晋中市| 颍上县| 赤壁市| 桂阳县| 定日县| 沅陵县|