找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Identification of Nonlinear Systems Using Neural Networks and Polynomial Models; A Block-Oriented App Andrzej Janczak Book 2005 Springer-Ve

[復(fù)制鏈接]
查看: 19205|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:18:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models
副標(biāo)題A Block-Oriented App
編輯Andrzej Janczak
視頻videohttp://file.papertrans.cn/461/460840/460840.mp4
概述First book on neural network and polynomial approach to identification of Wiener and Hammerstein systems..Includes supplementary material:
叢書(shū)名稱Lecture Notes in Control and Information Sciences
圖書(shū)封面Titlebook: Identification of Nonlinear Systems Using Neural Networks and Polynomial Models; A Block-Oriented App Andrzej Janczak Book 2005 Springer-Ve
描述.This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory..
出版日期Book 2005
關(guān)鍵詞Justin; Learning Algorithms; Nonlinear Systems; Polynomial Models; neural networks; nonlinear system; syst
版次1
doihttps://doi.org/10.1007/b98334
isbn_softcover978-3-540-23185-1
isbn_ebook978-3-540-31596-4Series ISSN 0170-8643 Series E-ISSN 1610-7411
issn_series 0170-8643
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models影響因子(影響力)




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models影響因子(影響力)學(xué)科排名




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models被引頻次




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models被引頻次學(xué)科排名




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models年度引用




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models年度引用學(xué)科排名




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models讀者反饋




書(shū)目名稱Identification of Nonlinear Systems Using Neural Networks and Polynomial Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:00 | 只看該作者
6 Applications,ve stage sugar evaporation station is studied in Section 6.3. Two nominal models of the process, i.e., a linear model and a neural network Wiener model are developed based on the real process data recorded at the Lublin Sugar Factory in Poland. Finally, Section 6.4 summarizes the results.
板凳
發(fā)表于 2025-3-22 00:48:33 | 只看該作者
Book 2005known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new a
地板
發(fā)表于 2025-3-22 05:00:24 | 只看該作者
0170-8643 This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gi
5#
發(fā)表于 2025-3-22 10:51:23 | 只看該作者
4 Polynomial Wiener models,an approach, however, results in inconsistent parameter estimates. As a remedy against this problem, an instrumental variables method is proposed with instrumental variables chosen as delayed system inputs and delayed and powered delayed outputs of the model obtained using the least squares method.
6#
發(fā)表于 2025-3-22 16:30:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:55:38 | 只看該作者
hardness studies the vastly dominant technique is that of static indentation. Now some practical aspects of indentation hardness measurements will be considered. Figure 1.3 shows that in a seemingly arbitrary way indentation hardness values and measurements have been determined by the range of the a
8#
發(fā)表于 2025-3-22 23:48:53 | 只看該作者
Andrzej Janczakhardness studies the vastly dominant technique is that of static indentation. Now some practical aspects of indentation hardness measurements will be considered. Figure 1.3 shows that in a seemingly arbitrary way indentation hardness values and measurements have been determined by the range of the a
9#
發(fā)表于 2025-3-23 02:50:06 | 只看該作者
10#
發(fā)表于 2025-3-23 06:15:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 15:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台中市| 河北省| 随州市| 宝清县| 宁明县| 盐城市| 加查县| 黔西县| 怀化市| 江门市| 棋牌| 乐都县| 衢州市| 嘉禾县| 衢州市| 桂林市| 太原市| 涞水县| 特克斯县| 奉节县| 浦东新区| 九江市| 韩城市| 南雄市| 富宁县| 聂荣县| 房山区| 麦盖提县| 柳州市| 普安县| 平罗县| 潮州市| 丽水市| 平阳县| 西峡县| 沙坪坝区| 长宁区| 凉山| 丰宁| 乌鲁木齐市| 南江县|