找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ideals, Varieties, and Algorithms; An Introduction to C David A. Cox,John Little,Donal O’Shea Textbook 2015Latest edition Springer Internat

[復(fù)制鏈接]
樓主: Hoover
21#
發(fā)表于 2025-3-25 03:44:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:11:40 | 只看該作者
23#
發(fā)表于 2025-3-25 13:35:59 | 只看該作者
24#
發(fā)表于 2025-3-25 16:45:19 | 只看該作者
Geometry, Algebra, and Algorithms,her dimensional objects) defined by polynomial equations. To understand affine varieties, we will need some algebra, and in particular, we will need to study . in the polynomial ring .[.,?.,?.]. Finally, we will discuss polynomials in one variable to illustrate the role played by ..
25#
發(fā)表于 2025-3-25 22:22:48 | 只看該作者
,Gr?bner Bases,er, we will study the method of Gr?bner bases, which will allow us to solve problems about polynomial ideals in an algorithmic or computational fashion. The method of Gr?bner bases is also used in several powerful computer algebra systems to study specific polynomial ideals that arise in application
26#
發(fā)表于 2025-3-26 02:40:10 | 只看該作者
,The Algebra–Geometry Dictionary,m which identifies exactly which ideals correspond to varieties. This will allow us to construct a “dictionary” between geometry and algebra, whereby any statement about varieties can be translated into a statement about ideals (and conversely). We will pursue this theme in §§. and?., where we will
27#
發(fā)表于 2025-3-26 07:54:09 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:24 | 只看該作者
Robotics and Automatic Geometric Theorem Proving, theme introduced in several examples in Chapter?., we will develop a systematic approach that uses algebraic varieties to describe the space of possible configurations of mechanical linkages such as robot “arms.” We will use this approach to solve the forward and inverse kinematic problems of robot
29#
發(fā)表于 2025-3-26 16:41:29 | 只看該作者
Projective Algebraic Geometry, create .-dimensional projective space .. We will then define projective varieties in . and study the projective version of the algebra–geometry dictionary. The relation between affine and projective varieties will be considered in §.; in §., we will study elimination theory from a projective point
30#
發(fā)表于 2025-3-26 18:31:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 17:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泊头市| 新密市| 榆林市| 咸丰县| 南宁市| 嘉义市| 昔阳县| 仁化县| 巴里| 宁远县| 九江县| 南昌市| 灵台县| 荆门市| 彩票| 汝南县| 临猗县| 怀化市| 剑川县| 家居| 苍梧县| 宜兰市| 繁昌县| 峨眉山市| 武山县| 贵港市| 永丰县| 桓仁| 乐东| 铁岭县| 淮安市| 开封市| 洛宁县| 萝北县| 江油市| 宁远县| 金华市| 静乐县| 和平区| 双江| 迁西县|