找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ideals and Reality; Projective Modules a Friedrich Ischebeck,Ravi A. Rao Book 2005 Springer-Verlag Berlin Heidelberg 2005 Classical algebra

[復(fù)制鏈接]
查看: 13944|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:40:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ideals and Reality
副標(biāo)題Projective Modules a
編輯Friedrich Ischebeck,Ravi A. Rao
視頻videohttp://file.papertrans.cn/461/460765/460765.mp4
概述Includes supplementary material:
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Ideals and Reality; Projective Modules a Friedrich Ischebeck,Ravi A. Rao Book 2005 Springer-Verlag Berlin Heidelberg 2005 Classical algebra
描述Besides giving an introduction to Commutative Algebra - the theory of c- mutative rings - this book is devoted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are called free. So a finitely generated free R-module is of the form Rn for some n E IN, equipped with the usual operations. A module is called p- jective, iff it is a direct summand of a free one. Especially a finitely generated R-module P is projective iff there is an R-module Q with P @ Q S Rn for some n. Remarkably enough there do exist nonfree projective modules. Even there are nonfree P such that P @ Rm S Rn for some m and n. Modules P having the latter property are called stably free. On the other hand there are many rings, all of whose projective modules are free, e. g. local rings and principal ideal domains. (A commutative ring is called local iff it has exactly one maximal ideal. ) For two decades it was a challenging problem whether e
出版日期Book 2005
關(guān)鍵詞Classical algebraic K-theory; Complete intersections; Finite; K-theory; Numbers of generators; Projective
版次1
doihttps://doi.org/10.1007/b137484
isbn_softcover978-3-642-06195-0
isbn_ebook978-3-540-26370-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書目名稱Ideals and Reality影響因子(影響力)




書目名稱Ideals and Reality影響因子(影響力)學(xué)科排名




書目名稱Ideals and Reality網(wǎng)絡(luò)公開度




書目名稱Ideals and Reality網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ideals and Reality被引頻次




書目名稱Ideals and Reality被引頻次學(xué)科排名




書目名稱Ideals and Reality年度引用




書目名稱Ideals and Reality年度引用學(xué)科排名




書目名稱Ideals and Reality讀者反饋




書目名稱Ideals and Reality讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:06:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:28:52 | 只看該作者
1439-7382 dules are free, e. g. local rings and principal ideal domains. (A commutative ring is called local iff it has exactly one maximal ideal. ) For two decades it was a challenging problem whether e978-3-642-06195-0978-3-540-26370-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
地板
發(fā)表于 2025-3-22 07:33:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:25:13 | 只看該作者
6#
發(fā)表于 2025-3-22 14:56:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:59:32 | 只看該作者
8#
發(fā)表于 2025-3-22 23:50:00 | 只看該作者
9#
發(fā)表于 2025-3-23 03:56:13 | 只看該作者
10#
發(fā)表于 2025-3-23 09:07:28 | 只看該作者
linear oscillations that have been utilized in different scenarios as a computational substrate, whereas its photo-sensitivity have been exploited as an additional factor of manipulating the computations. A common method to mathematically represent the BZ dynamics is the Oregonator equations, which
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 10:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
子洲县| 共和县| 嘉定区| 横峰县| 桂平市| 鄢陵县| 丰原市| 永清县| 阜城县| 施甸县| 寻甸| 罗源县| 连山| 信阳市| 钦州市| 扶绥县| 桃园市| 博客| 嘉鱼县| 镇坪县| 岫岩| 汉寿县| 顺平县| 湖南省| 观塘区| 寿宁县| 自治县| 策勒县| 运城市| 丰县| 渑池县| 温州市| 颍上县| 沾益县| 福泉市| 绥江县| 平顶山市| 息烽县| 盖州市| 盈江县| 古浪县|