找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IV Hotine-Marussi Symposium on Mathematical Geodesy; Battista Benciolini Conference proceedings 2001 Springer-Verlag Berlin Heidelberg 200

[復(fù)制鏈接]
樓主: 有靈感
31#
發(fā)表于 2025-3-27 00:24:32 | 只看該作者
32#
發(fā)表于 2025-3-27 03:04:08 | 只看該作者
33#
發(fā)表于 2025-3-27 06:19:45 | 只看該作者
Simulation of the Goce Gravity Field Mission,f the spacecraft or thrusters for attitude and drag-free control. Each instrument shows its own error behavior which affects the measurements and the final products in a specific way. Here, the corresponding error Power Spectral Densities (PSD), due to several error sources, are shown..Error PSD’s r
34#
發(fā)表于 2025-3-27 13:06:07 | 只看該作者
35#
發(fā)表于 2025-3-27 16:08:08 | 只看該作者
Distance Measurement with Electromagnetic Wave Dispersion,aves are different and reach a given elevation at different points and times. If . is independent of the position, the paths of the waves coincide although the waves have different velocities. The length of a path and the travel time of electromagnetic waves in the atmosphere of a flat Earth model a
36#
發(fā)表于 2025-3-27 19:01:46 | 只看該作者
A Global Topographic-Isostatic Model Based on a Loading Theory,from the 1066. earth model, we calculate and discuss the vertical displacements and equipotential surface changes for depths: earth’s surface, . = 36 km and the core-mantle boundary. Numerical results show that the displacements at depth 36 km and the earth surface have the same distribution pattern
37#
發(fā)表于 2025-3-28 01:23:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:35:48 | 只看該作者
Approximation of Harmonic Covariance Functions on the Sphere by non Harmonic Locally Supported Ones2 elements. If finite covariance functions are used and if the observations are ordered in a reasonable manner, the matrices would contain non-zero elements of the order ... This fact made us propose three techniques to approximate harmonic covariance functions by finite supported positive definite
39#
發(fā)表于 2025-3-28 09:16:32 | 只看該作者
40#
發(fā)表于 2025-3-28 11:15:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡嘎县| 马山县| 大方县| 莎车县| 临夏县| 海南省| 资源县| 莱阳市| 吉首市| 大方县| 安阳市| 乌拉特前旗| 织金县| 塘沽区| 钟祥市| 台南县| 泗水县| 唐海县| 沈丘县| SHOW| 方城县| 成安县| 镇平县| 津市市| 台北县| 北宁市| 康定县| 西乌| 安庆市| 海门市| 达州市| 阿克| 桦南县| 万山特区| 平顺县| 凤台县| 浙江省| 庆元县| 招远市| 奈曼旗| 来安县|