找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media; Proceedings of the I B. Daya Reddy Conference proce

[復(fù)制鏈接]
樓主: 聯(lián)系
11#
發(fā)表于 2025-3-23 11:37:45 | 只看該作者
Stefan Loehnert,Dana S. Mueller-Hoeppe where closed structures seem to be unique (cp. ?in?ura [3], Isbell [8]). A further application of the extension theorem is a criterion for monoidal- resp. cartesian closedness of MacNeille completions. Of course a symmetric monoidal closed structure is uniquely determined by its values on a finally
12#
發(fā)表于 2025-3-23 16:53:47 | 只看該作者
N. Mo?s,N. Chevaugeon,F. Dufour where closed structures seem to be unique (cp. ?in?ura [3], Isbell [8]). A further application of the extension theorem is a criterion for monoidal- resp. cartesian closedness of MacNeille completions. Of course a symmetric monoidal closed structure is uniquely determined by its values on a finally
13#
發(fā)表于 2025-3-23 19:08:40 | 只看該作者
14#
發(fā)表于 2025-3-23 23:41:54 | 只看該作者
Francesco Marotti de Sciarra where closed structures seem to be unique (cp. ?in?ura [3], Isbell [8]). A further application of the extension theorem is a criterion for monoidal- resp. cartesian closedness of MacNeille completions. Of course a symmetric monoidal closed structure is uniquely determined by its values on a finally
15#
發(fā)表于 2025-3-24 05:27:14 | 只看該作者
F. Ebobisse,A. T. McBride,B. D. Reddy where closed structures seem to be unique (cp. ?in?ura [3], Isbell [8]). A further application of the extension theorem is a criterion for monoidal- resp. cartesian closedness of MacNeille completions. Of course a symmetric monoidal closed structure is uniquely determined by its values on a finally
16#
發(fā)表于 2025-3-24 06:51:47 | 只看該作者
Patrizio Neff where closed structures seem to be unique (cp. ?in?ura [3], Isbell [8]). A further application of the extension theorem is a criterion for monoidal- resp. cartesian closedness of MacNeille completions. Of course a symmetric monoidal closed structure is uniquely determined by its values on a finally
17#
發(fā)表于 2025-3-24 14:12:35 | 只看該作者
18#
發(fā)表于 2025-3-24 18:55:17 | 只看該作者
Stephan Brunssen,Corinna Hager,Florian Schmid,Barbara Wohlmuth where closed structures seem to be unique (cp. ?in?ura [3], Isbell [8]). A further application of the extension theorem is a criterion for monoidal- resp. cartesian closedness of MacNeille completions. Of course a symmetric monoidal closed structure is uniquely determined by its values on a finally
19#
發(fā)表于 2025-3-24 19:24:06 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 18:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂尔多斯市| 陇川县| 灌云县| 顺义区| 庆城县| 通化县| 台南市| 无锡市| 察隅县| 南澳县| 全南县| 呼图壁县| 靖边县| 五指山市| 安仁县| 屯留县| 怀化市| 连平县| 石柱| 大洼县| 岑溪市| 双柏县| 奉贤区| 田林县| 巫山县| 昌宁县| 阿图什市| 海阳市| 鲁甸县| 奈曼旗| 新安县| 嘉鱼县| 宝兴县| 哈巴河县| 南郑县| 大兴区| 屏东市| 白河县| 宜章县| 醴陵市| 兰考县|