找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Nonlinear Waves in Multi-Phase Flow; Proceedings of the I H.-C. Chang Conference proceedings 2000 Springer Science+Busin

[復(fù)制鏈接]
樓主: coherent
21#
發(fā)表于 2025-3-25 06:07:59 | 只看該作者
22#
發(fā)表于 2025-3-25 10:02:47 | 只看該作者
The Linear Stability of a Core Annular Flow in a Corrugated Tubebe wall and surrounds the other (core) fluid. Core annular flows are widely studied and employed as a useful model to analyze a number of technologies and problems of scientific interest such as oil recovery. The interfacial stability, however, can significantly affect the efficiency of the recovery
23#
發(fā)表于 2025-3-25 14:09:50 | 只看該作者
Cusp Formation and Tip-Streaming Instabilities for Time-Evolving Interfaces in Two-Dimensional Stokeed. The role of constant as well as variable surface tension, induced by the presence of surfactant, is considered. For constant surface tension, a previously determined class of exact nearly cusped solutions is found to be linearly stable. However, for large capillary number . the steady solutions
24#
發(fā)表于 2025-3-25 18:36:45 | 只看該作者
25#
發(fā)表于 2025-3-25 22:39:15 | 只看該作者
26#
發(fā)表于 2025-3-26 02:47:55 | 只看該作者
27#
發(fā)表于 2025-3-26 07:05:38 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:33 | 只看該作者
Dewetting of a Hot Coated Solid Surfaceforces governed by a 3–4 power-law potential is presented. This form can be obtained with a coated and/or rough surface, as opposed to molecularly smooth and clean surfaces implied by the Lennard-Jones 3–9 power-law potential. The nonlinear evolution equation is derived, and numerical calculations a
29#
發(fā)表于 2025-3-26 14:40:42 | 只看該作者
https://doi.org/10.1007/978-94-017-1996-4dynamics; instability; solid; stability; stress; waves; fluid- and aerodynamics
30#
發(fā)表于 2025-3-26 18:13:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和龙市| 依安县| 兰溪市| 凤台县| 石河子市| 光泽县| 赣州市| 侯马市| 黔西| 常熟市| 克什克腾旗| 固安县| 灵川县| 蓬安县| 隆昌县| 南通市| 固始县| 台中市| 南漳县| 六枝特区| 泰宁县| 隆子县| 信丰县| 绥阳县| 巨鹿县| 钟祥市| 巫溪县| 富川| 锦州市| 桃江县| 察雅县| 苏尼特右旗| 安陆市| 噶尔县| 巧家县| 冕宁县| 恩平市| 平乐县| 新乡市| 黄冈市| 九江市|