找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Nonlinear Stochastic Dynamics and Control; Proceedings of the I W. Q. Zhu,Y. K. Lin,G. Q. Cai Conference proceedings 201

[復(fù)制鏈接]
樓主: choleric
11#
發(fā)表于 2025-3-23 11:54:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:48:13 | 只看該作者
Feature Extraction within the Fei-Tsui Arch Dam under Environmental Variationsdata of the dam. The methods include the singular spectrum analysis with AR model (SSA-AR) and the nonlinear principal component analysis (NPCA) using auto-associate neural network method (AANN). By using these methods, the residual deformation between the estimated and the recorded data was generat
13#
發(fā)表于 2025-3-23 21:18:28 | 只看該作者
14#
發(fā)表于 2025-3-24 00:55:31 | 只看該作者
Marginal Instability and Intermittency in Stochastic Systemsansient response. This results in a solution for the response probability density function (PDF). The analysis is also used to derive on-line identification procedure for the system from its observed response with set of rare outbreaks. Potential examples of applications include 1D and 2D short-term
15#
發(fā)表于 2025-3-24 02:32:37 | 只看該作者
W. Q. Zhu,Y. K. Lin,G. Q. CaiIUTAM symposia represent the state of the art in their topic;.This volume sets the standard for 5-7 years ahead;.Contributions by leading experts in the world.
16#
發(fā)表于 2025-3-24 07:59:00 | 只看該作者
17#
發(fā)表于 2025-3-24 13:14:05 | 只看該作者
18#
發(fā)表于 2025-3-24 15:59:34 | 只看該作者
A Practical Strategy to Study Stochastic Chaostegy for studying stochastic chaos is proposed and illustrated by a Duffing oscillator with bounded random parameter and driven by an ergodic random excitation. By the proposed method we have studied stochastic chaos and its control, and synchronization in typical nonlinear dynamical systems. Some representative results are reported.
19#
發(fā)表于 2025-3-24 19:20:17 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:09 | 只看該作者
IUTAM Symposium on Nonlinear Stochastic Dynamics and Control978-94-007-0732-0Series ISSN 1875-3507 Series E-ISSN 1875-3493
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱西市| 葵青区| 镇远县| 宜章县| 瓦房店市| 太和县| 本溪市| 深州市| 衡水市| 望城县| 大足县| 湖口县| 孙吴县| 武功县| 桂东县| 吐鲁番市| 兴海县| 琼海市| 和龙市| 阳泉市| 大理市| 武夷山市| 通州市| 绥德县| 洞头县| 石泉县| 剑阁县| 高尔夫| 罗山县| 兴文县| 丹凤县| 吴旗县| 夏河县| 安达市| 东丰县| 阳春市| 裕民县| 石台县| 新邵县| 灵台县| 集贤县|