找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Nonlinear Stochastic Dynamics and Control; Proceedings of the I W. Q. Zhu,Y. K. Lin,G. Q. Cai Conference proceedings 201

[復制鏈接]
樓主: choleric
11#
發(fā)表于 2025-3-23 11:54:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:48:13 | 只看該作者
Feature Extraction within the Fei-Tsui Arch Dam under Environmental Variationsdata of the dam. The methods include the singular spectrum analysis with AR model (SSA-AR) and the nonlinear principal component analysis (NPCA) using auto-associate neural network method (AANN). By using these methods, the residual deformation between the estimated and the recorded data was generat
13#
發(fā)表于 2025-3-23 21:18:28 | 只看該作者
14#
發(fā)表于 2025-3-24 00:55:31 | 只看該作者
Marginal Instability and Intermittency in Stochastic Systemsansient response. This results in a solution for the response probability density function (PDF). The analysis is also used to derive on-line identification procedure for the system from its observed response with set of rare outbreaks. Potential examples of applications include 1D and 2D short-term
15#
發(fā)表于 2025-3-24 02:32:37 | 只看該作者
W. Q. Zhu,Y. K. Lin,G. Q. CaiIUTAM symposia represent the state of the art in their topic;.This volume sets the standard for 5-7 years ahead;.Contributions by leading experts in the world.
16#
發(fā)表于 2025-3-24 07:59:00 | 只看該作者
17#
發(fā)表于 2025-3-24 13:14:05 | 只看該作者
18#
發(fā)表于 2025-3-24 15:59:34 | 只看該作者
A Practical Strategy to Study Stochastic Chaostegy for studying stochastic chaos is proposed and illustrated by a Duffing oscillator with bounded random parameter and driven by an ergodic random excitation. By the proposed method we have studied stochastic chaos and its control, and synchronization in typical nonlinear dynamical systems. Some representative results are reported.
19#
發(fā)表于 2025-3-24 19:20:17 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:09 | 只看該作者
IUTAM Symposium on Nonlinear Stochastic Dynamics and Control978-94-007-0732-0Series ISSN 1875-3507 Series E-ISSN 1875-3493
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-6 00:49
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丁青县| 翁牛特旗| 通化市| 湛江市| 桑植县| 且末县| 资兴市| 武川县| 九龙城区| 永寿县| 新郑市| 武平县| 沙洋县| 叶城县| 建德市| 龙山县| 宾川县| 内丘县| 金门县| 磴口县| 资兴市| 湖南省| 休宁县| 资溪县| 长垣县| 南澳县| 舒城县| 涡阳县| 贡觉县| 灵川县| 集安市| 乐山市| 青阳县| 宜兰县| 白朗县| 资溪县| 宕昌县| 美姑县| 佛坪县| 丰城市| 杭锦旗|