找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ICT Systems Security and Privacy Protection; 35th IFIP TC 11 Inte Marko H?lbl,Kai Rannenberg,Tatjana Welzer Conference proceedings 2020 IFI

[復(fù)制鏈接]
樓主: Opulent
31#
發(fā)表于 2025-3-26 21:15:14 | 只看該作者
Leaky Controller: Cross-VM Memory Controller Covert Channel on Multi-core Systemsrently, conflicts in memory resource occur, resulting in observable timing variations during execution. Malicious tenants can intentionally manipulate the hardware platform to devise a covert channel, enabling them to steal the data of co-residing tenants. This paper presents two new microarchitectu
32#
發(fā)表于 2025-3-27 02:10:43 | 只看該作者
Evaluation of Statistical Tests for Detecting Storage-Based Covert Channelsion. However, detecting the leakage of sensitive information in networked systems is still a challenging problem, especially when adversaries use covert channels to exfiltrate sensitive information to unauthorized parties. Presently, approaches for detecting timing-based covert channels have been st
33#
發(fā)表于 2025-3-27 05:51:22 | 只看該作者
IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks Through Indirect Evictionets by observing cache lines evicted by the co-running applications. A precondition for such attacks is that the attacker needs a set of cache lines mapped to memory addresses belonging to victim, called .. Attacker learns eviction set by loading the cache lines at random and then it observes their
34#
發(fā)表于 2025-3-27 12:23:51 | 只看該作者
Refined Detection of SSH Brute-Force Attackers Using Machine Learningwork traffic analysis to identify attackers. Recent papers describe how to detect BF attacks using pure NetFlow data. However, our evaluation shows significant false-positive (FP) results of the current solution. To overcome the issue of high FP rate, we propose a machine learning (ML) approach to d
35#
發(fā)表于 2025-3-27 14:15:59 | 只看該作者
36#
發(fā)表于 2025-3-27 20:19:40 | 只看該作者
37#
發(fā)表于 2025-3-28 01:06:29 | 只看該作者
Assisting Users to Create Stronger Passwords Using ContextBased MicroTrainingwords. Rather than a technical enforcing measure, CBMT is a framework that provides information security training to users when they are in a situation where the training is directly relevant. The study is carried out in two steps. First, a survey is used to measure how well users understand passwor
38#
發(fā)表于 2025-3-28 05:49:06 | 只看該作者
Facilitating Privacy Attitudes and Behaviors with Affective Visual Design privacy policies, we are rarely aware of processing practices. Drawing on multidisciplinary research, we postulate that privacy policies presenting information in a way that triggers affective responses, together with individual characteristics, may influence privacy attitudes. Through an online qu
39#
發(fā)表于 2025-3-28 09:35:39 | 只看該作者
40#
發(fā)表于 2025-3-28 12:24:55 | 只看該作者
JavaScript Malware Detection Using Locality Sensitive HashingvaScript malware through static analysis. An experiment is conducted using a dataset containing 1.5M evenly distributed benign and malicious samples provided by the anti-malware company Cyren. Four different locality sensitive hashing algorithms are tested and evaluated: Nilsimsa, ssdeep, TLSH, and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 18:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贞丰县| 师宗县| 延安市| 新乐市| 区。| 邹平县| 石河子市| 杭锦旗| 鄂伦春自治旗| 益阳市| 金门县| 定南县| 宁武县| 榆林市| 五莲县| 宣武区| 美姑县| 太仓市| 策勒县| 鄱阳县| 临猗县| 巫山县| 林西县| 曲松县| 北安市| 泸溪县| 彩票| 阳江市| 黄骅市| 常宁市| 平阳县| 林周县| 黄骅市| 崇明县| 晋宁县| 漾濞| 如皋市| 大宁县| 潞城市| 安陆市| 靖江市|