找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics; Liang-Yee Cheng Conference proceedings 2023 The Edi

[復制鏈接]
查看: 13497|回復: 56
樓主
發(fā)表于 2025-3-21 19:56:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics
編輯Liang-Yee Cheng
視頻videohttp://file.papertrans.cn/461/460105/460105.mp4
概述Presents the outcomes of 20th International Conference on Geometry and Graphics (ICGG 2022).Highlights the latest research in Applied Geometry, Computer Graphics, and Graphics Education.Written by lea
叢書名稱Lecture Notes on Data Engineering and Communications Technologies
圖書封面Titlebook: ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics;  Liang-Yee Cheng Conference proceedings 2023 The Edi
描述.This book covers recent achievements on the ever-expanding field of Geometry and Graphics on both analogical and digital fronts, from theoretical investigations to a broad range of applications, new teaching methodologies, and historical aspects. It is from 20th International Conference on Geometry and Graphics (ICGG2022), a series of conference that started in 1978 and promoted by International Society for Geometry and Graphics, which aims to foster international collaboration and stimulate the scientific research and teaching innovations in the multidisciplinary field. The contents of the book are organized in: Theoretical Geometry and Graphics; Applied Geometry and Graphics; Engineering Computer Graphics; Graphics Education; Geometry and?Graphics in History, and are intent for the academics, researchers, and professionals in architecture, engineering, industrial design, mathematics, and arts..
出版日期Conference proceedings 2023
關鍵詞Graphics; Graphics Science; Geometry; Computer Graphics; Design Graphics; Graphics Education; ICGG; ICGG202
版次1
doihttps://doi.org/10.1007/978-3-031-13588-0
isbn_softcover978-3-031-13587-3
isbn_ebook978-3-031-13588-0Series ISSN 2367-4512 Series E-ISSN 2367-4520
issn_series 2367-4512
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics影響因子(影響力)




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics影響因子(影響力)學科排名




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics網(wǎng)絡公開度




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics網(wǎng)絡公開度學科排名




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics被引頻次




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics被引頻次學科排名




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics年度引用




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics年度引用學科排名




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics讀者反饋




書目名稱ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:34:04 | 只看該作者
On the?Diagonals of?Billiardsdes are tangents of a confocal conic called caustic .. The variation of billiards in . with caustic . is called billiard motion. We recall and extend a classical result of Poncelet on the diagonals of billiards which envelope motion-invariant conics. Each billiard in . with caustic . is the flat pos
板凳
發(fā)表于 2025-3-22 00:26:42 | 只看該作者
Circumparabolas in?Chapple’s Porismthat the focal points of the parabolas in a certain one-parameter subfamily trace a straight line. The vertices of these parabolas move on rational cubic curves whose acnodes trace an ellipse centered at the poristic stationary triangle center which is the midpoint of the common incenter and the com
地板
發(fā)表于 2025-3-22 08:32:16 | 只看該作者
5#
發(fā)表于 2025-3-22 11:47:12 | 只看該作者
Beyond the?Nine-Point Conicral . and an arbitrarily chosen point . there exists a conic . passing through ten points: ., the three diagonal points of ., and the six inverses of the poles of the lines . with respect to any circumconic . of . and the inversion center .. The circumconic . can be any conic from the pencil circums
6#
發(fā)表于 2025-3-22 14:37:32 | 只看該作者
7#
發(fā)表于 2025-3-22 19:10:30 | 只看該作者
Integer Sequences from?Circle Divisions by?Rational Billiard Trajectoriese divisions into regions we derive a general formula for the number of division regions after each reflection. This will give rise to an integer division sequence. Restricting to the special cases . we show that the number of regions after each reflection . is beautifully related to Gauss’s arithmet
8#
發(fā)表于 2025-3-22 22:42:30 | 只看該作者
9#
發(fā)表于 2025-3-23 05:09:34 | 只看該作者
10#
發(fā)表于 2025-3-23 08:26:06 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 04:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南郑县| 岳阳县| 平顶山市| 登封市| 乌海市| 波密县| 镶黄旗| 鸡泽县| 张家港市| 新余市| 安塞县| 罗山县| 松江区| 白银市| 应用必备| 盐源县| 莲花县| 锦屏县| 永嘉县| 思茅市| 进贤县| 合山市| 正镶白旗| 石门县| 西乌珠穆沁旗| 通江县| 启东市| 安塞县| 永登县| 连云港市| 汕尾市| 吴忠市| 巴楚县| 牙克石市| 绥宁县| 瑞丽市| 房产| 莎车县| 科技| 青神县| 略阳县|