找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ICDSMLA 2020; Proceedings of the 2 Amit Kumar,Sabrina Senatore,Vinit Kumar Gunjan Conference proceedings 2022 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 54848|回復(fù): 68
樓主
發(fā)表于 2025-3-21 16:38:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱ICDSMLA 2020
副標(biāo)題Proceedings of the 2
編輯Amit Kumar,Sabrina Senatore,Vinit Kumar Gunjan
視頻videohttp://file.papertrans.cn/461/460097/460097.mp4
概述Highlights recent advances in artificial intelligence, machine learning, soft computing.Discusses the applications of new emerging technologies for professionals and researchers alike.Includes selecte
叢書(shū)名稱Lecture Notes in Electrical Engineering
圖書(shū)封面Titlebook: ICDSMLA 2020; Proceedings of the 2 Amit Kumar,Sabrina Senatore,Vinit Kumar Gunjan Conference proceedings 2022 The Editor(s) (if applicable)
描述This book gathers selected high-impact articles from the 2nd International Conference on Data Science, Machine Learning & Applications 2020. It highlights the latest developments in the areas of artificial intelligence, machine learning, soft computing, human–computer interaction and various data science and machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.
出版日期Conference proceedings 2022
關(guān)鍵詞Soft Computing; Automation and Innovation; Artificial Intelligence; Medical Informatics; Algorithm Perfo
版次1
doihttps://doi.org/10.1007/978-981-16-3690-5
isbn_softcover978-981-16-3692-9
isbn_ebook978-981-16-3690-5Series ISSN 1876-1100 Series E-ISSN 1876-1119
issn_series 1876-1100
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱ICDSMLA 2020影響因子(影響力)




書(shū)目名稱ICDSMLA 2020影響因子(影響力)學(xué)科排名




書(shū)目名稱ICDSMLA 2020網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱ICDSMLA 2020網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱ICDSMLA 2020被引頻次




書(shū)目名稱ICDSMLA 2020被引頻次學(xué)科排名




書(shū)目名稱ICDSMLA 2020年度引用




書(shū)目名稱ICDSMLA 2020年度引用學(xué)科排名




書(shū)目名稱ICDSMLA 2020讀者反饋




書(shū)目名稱ICDSMLA 2020讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:37:33 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:28 | 只看該作者
5#
發(fā)表于 2025-3-22 09:03:38 | 只看該作者
Conference proceedings 2022ience and machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.
6#
發(fā)表于 2025-3-22 13:28:29 | 只看該作者
,Automatic Notes Generation from?Lecture Videos,enerated transcripts, generating Portable Document Format (PDF) from the text and creating PowerPoint Presentation by extracting important points from the text using K-means clustering and LexRank extractive text summarization.
7#
發(fā)表于 2025-3-22 17:50:39 | 只看該作者
8#
發(fā)表于 2025-3-23 00:57:56 | 只看該作者
Flight Delay Prediction Using Random Forest Classifier,ine learning model (Random Forest Classifier) to predict delay time and probability. As random forest, in general, is robust, more flexible, and makes effective estimates this model will help in improving the overall performance of the system.
9#
發(fā)表于 2025-3-23 04:56:40 | 只看該作者
An Analytical Prediction of Breast Cancer Using Machine Learning,ion Tree, K-Nearest Neighbours. Support Vector Classifier and Random forest gave the highest accuracy, Evaluation metrics such are Area Under Curve-Rectified Operational Characteristics curve, confusion matrix, Recall score, accuracy. To avoid overfitting cross validation is used where k fold value is 3.
10#
發(fā)表于 2025-3-23 08:03:06 | 只看該作者
1876-1100 m different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.978-981-16-3692-9978-981-16-3690-5Series ISSN 1876-1100 Series E-ISSN 1876-1119
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 20:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拉孜县| 通河县| 吐鲁番市| 景宁| 青州市| 遂溪县| 库车县| 文化| 霍林郭勒市| 鄯善县| 洛川县| 秭归县| 阳曲县| 县级市| 澳门| 丹江口市| 瓮安县| 宜阳县| 兴隆县| 河源市| 古交市| 洞头县| 长寿区| 伊宁市| 扬中市| 全州县| 石河子市| 宜昌市| 商河县| 贵港市| 广汉市| 合作市| 建昌县| 西平县| 新邵县| 通山县| 武陟县| 重庆市| 师宗县| 左云县| 乌恰县|