找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyponormal Quantization of Planar Domains; Exponential Transfor Bj?rn Gustafsson,Mihai Putinar Book 2017 Springer International Publishing

[復(fù)制鏈接]
樓主: Conjecture
11#
發(fā)表于 2025-3-23 12:03:50 | 只看該作者
Finite Central Truncations of Linear Operators,l polynomials, we prove that the exponential orthogonal polynomials satisfy a three term relation only in the case of an ellipse. Some general perturbation theory arguments are collected in the last section.
12#
發(fā)表于 2025-3-23 17:19:10 | 只看該作者
Mother Bodies,to the Cauchy problem for an elliptic operator) very few domains admit mother bodies, but for domains with piecewise algebraic boundaries there is a rather constructive and efficient theory, bearing in mind that the same class of domains is also amenable for studying zeros of orthogonal polynomials.
13#
發(fā)表于 2025-3-23 21:48:07 | 只看該作者
14#
發(fā)表于 2025-3-24 00:55:34 | 只看該作者
The Exponential Transform,as being (part of) the unique holomorphic section of a certain line bundle over the Riemann sphere taking a prescribed value at infinity, or alternatively as being the unique solution of a corresponding Riemann-Hilbert problem.
15#
發(fā)表于 2025-3-24 04:59:13 | 只看該作者
Book 2017hed...The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximationtheory, mathematical physics..
16#
發(fā)表于 2025-3-24 09:07:41 | 只看該作者
17#
發(fā)表于 2025-3-24 12:04:34 | 只看該作者
18#
發(fā)表于 2025-3-24 16:18:56 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:41 | 只看該作者
Bj?rn Gustafsson,Mihai PutinarA self-contained exposition of the concept of "mother body" in potential theory.Intriguing numerical experiments lacking theoretical explanation.A new class of complex polynomials orthogonal with resp
20#
發(fā)表于 2025-3-25 00:07:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤峰县| 手机| 白城市| 富锦市| 中宁县| 资溪县| 溧阳市| 玉环县| 秀山| 汉寿县| 当涂县| 安庆市| 宜黄县| 十堰市| 正宁县| 台安县| 靖远县| 青海省| 鹤岗市| 句容市| 绵竹市| 伊宁市| 郴州市| 康保县| 深州市| 崇礼县| 泽州县| 鄂伦春自治旗| 长兴县| 泸溪县| 长治县| 深州市| 通江县| 夏河县| 黄大仙区| 时尚| 临澧县| 全南县| 宁远县| 吐鲁番市| 大名县|