找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyponormal Quantization of Planar Domains; Exponential Transfor Bj?rn Gustafsson,Mihai Putinar Book 2017 Springer International Publishing

[復(fù)制鏈接]
樓主: Conjecture
11#
發(fā)表于 2025-3-23 12:03:50 | 只看該作者
Finite Central Truncations of Linear Operators,l polynomials, we prove that the exponential orthogonal polynomials satisfy a three term relation only in the case of an ellipse. Some general perturbation theory arguments are collected in the last section.
12#
發(fā)表于 2025-3-23 17:19:10 | 只看該作者
Mother Bodies,to the Cauchy problem for an elliptic operator) very few domains admit mother bodies, but for domains with piecewise algebraic boundaries there is a rather constructive and efficient theory, bearing in mind that the same class of domains is also amenable for studying zeros of orthogonal polynomials.
13#
發(fā)表于 2025-3-23 21:48:07 | 只看該作者
14#
發(fā)表于 2025-3-24 00:55:34 | 只看該作者
The Exponential Transform,as being (part of) the unique holomorphic section of a certain line bundle over the Riemann sphere taking a prescribed value at infinity, or alternatively as being the unique solution of a corresponding Riemann-Hilbert problem.
15#
發(fā)表于 2025-3-24 04:59:13 | 只看該作者
Book 2017hed...The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximationtheory, mathematical physics..
16#
發(fā)表于 2025-3-24 09:07:41 | 只看該作者
17#
發(fā)表于 2025-3-24 12:04:34 | 只看該作者
18#
發(fā)表于 2025-3-24 16:18:56 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:41 | 只看該作者
Bj?rn Gustafsson,Mihai PutinarA self-contained exposition of the concept of "mother body" in potential theory.Intriguing numerical experiments lacking theoretical explanation.A new class of complex polynomials orthogonal with resp
20#
發(fā)表于 2025-3-25 00:07:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金堂县| 洛宁县| 广灵县| 孟村| 娄烦县| 闽清县| 土默特右旗| 怀柔区| 肇源县| 朔州市| 安吉县| 金坛市| 徐水县| 沽源县| 临泽县| 城口县| 汉川市| 淮南市| 金塔县| 仁寿县| 周宁县| 裕民县| 博罗县| 集安市| 陇川县| 乌拉特后旗| 黔南| 永新县| 盐津县| 太仆寺旗| 射洪县| 五台县| 富平县| 盘锦市| 东港市| 鄂伦春自治旗| 晋城| 武川县| 北辰区| 靖宇县| 阿克|