找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyponormal Quantization of Planar Domains; Exponential Transfor Bj?rn Gustafsson,Mihai Putinar Book 2017 Springer International Publishing

[復(fù)制鏈接]
樓主: Conjecture
11#
發(fā)表于 2025-3-23 12:03:50 | 只看該作者
Finite Central Truncations of Linear Operators,l polynomials, we prove that the exponential orthogonal polynomials satisfy a three term relation only in the case of an ellipse. Some general perturbation theory arguments are collected in the last section.
12#
發(fā)表于 2025-3-23 17:19:10 | 只看該作者
Mother Bodies,to the Cauchy problem for an elliptic operator) very few domains admit mother bodies, but for domains with piecewise algebraic boundaries there is a rather constructive and efficient theory, bearing in mind that the same class of domains is also amenable for studying zeros of orthogonal polynomials.
13#
發(fā)表于 2025-3-23 21:48:07 | 只看該作者
14#
發(fā)表于 2025-3-24 00:55:34 | 只看該作者
The Exponential Transform,as being (part of) the unique holomorphic section of a certain line bundle over the Riemann sphere taking a prescribed value at infinity, or alternatively as being the unique solution of a corresponding Riemann-Hilbert problem.
15#
發(fā)表于 2025-3-24 04:59:13 | 只看該作者
Book 2017hed...The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximationtheory, mathematical physics..
16#
發(fā)表于 2025-3-24 09:07:41 | 只看該作者
17#
發(fā)表于 2025-3-24 12:04:34 | 只看該作者
18#
發(fā)表于 2025-3-24 16:18:56 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:41 | 只看該作者
Bj?rn Gustafsson,Mihai PutinarA self-contained exposition of the concept of "mother body" in potential theory.Intriguing numerical experiments lacking theoretical explanation.A new class of complex polynomials orthogonal with resp
20#
發(fā)表于 2025-3-25 00:07:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
始兴县| 阿勒泰市| 青川县| 临潭县| 乌拉特中旗| 汶上县| 竹溪县| 尼勒克县| 汶川县| 兴安盟| 宁津县| 离岛区| 济南市| 北宁市| 长沙市| 乌兰县| 宁波市| 柘城县| 泸水县| 延庆县| 大宁县| 寿宁县| 弥渡县| 宕昌县| 中卫市| 东源县| 蒲江县| 枣阳市| 鄂托克前旗| 盖州市| 宁国市| 丹江口市| 太白县| 台东市| 霍林郭勒市| 长葛市| 德格县| 徐闻县| 连平县| 沭阳县| 涿鹿县|