找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypervirial Theorems; F. M. Fernández,E. A. Castro Book 1987 Springer-Verlag Berlin Heidelberg 1987 Hamiltonian operator.Schr?dinger equat

[復(fù)制鏈接]
樓主: 女孩
11#
發(fā)表于 2025-3-23 13:46:05 | 只看該作者
12#
發(fā)表于 2025-3-23 17:41:17 | 只看該作者
Hypervirial Theorems for Finite 1D Systems. Von Neumann Boundary Conditionsparison there have not been reported in the current literature. However, some of the next theoretical results to be derived in what follows will be suggestible and interesting enough to deserve their examination.
13#
發(fā)表于 2025-3-23 21:59:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:11:32 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:40 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:58 | 只看該作者
17#
發(fā)表于 2025-3-24 13:36:29 | 只看該作者
https://doi.org/10.1057/9780230287624We showed in section 9 how the RSPT allows one to obtain the energy and the wave function corrections via the resolution of some differential equations. Here we present a method that combines HR and PT and has proven to be extremely powerful when it is applied to simple models.
18#
發(fā)表于 2025-3-24 18:18:38 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:16 | 只看該作者
https://doi.org/10.1007/978-3-319-76696-6We have deduced the HT for some GBC. The Imposition of limiting conditions for A and B gives some particular BC, one of which will be discussed in this Chapter.
20#
發(fā)表于 2025-3-25 03:12:46 | 只看該作者
Hypervirial Theorems and the Variational TheoremIn Chapter II we have dealt with one of the two most important methods that allow one to get approximations for the solutions of the Schr?dinger equation, i.e. PT. The other relevant method is the variational approx.mation, which will be discussed briefly in this section.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡水市| 永新县| 梁山县| 浪卡子县| 陈巴尔虎旗| 都江堰市| 灵宝市| 科技| 普定县| 宁德市| 融水| 沙洋县| 田林县| 三原县| 策勒县| 伊金霍洛旗| 镇康县| 靖宇县| 青岛市| 桂阳县| 县级市| 阜南县| 汶川县| 张北县| 本溪市| 台北县| 三门县| 泰州市| 永城市| 万宁市| 东阳市| 军事| 渑池县| 左权县| 安远县| 滦平县| 莫力| 凤台县| 定日县| 樟树市| 武胜县|