找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypervirial Theorems; F. M. Fernández,E. A. Castro Book 1987 Springer-Verlag Berlin Heidelberg 1987 Hamiltonian operator.Schr?dinger equat

[復(fù)制鏈接]
樓主: 女孩
11#
發(fā)表于 2025-3-23 13:46:05 | 只看該作者
12#
發(fā)表于 2025-3-23 17:41:17 | 只看該作者
Hypervirial Theorems for Finite 1D Systems. Von Neumann Boundary Conditionsparison there have not been reported in the current literature. However, some of the next theoretical results to be derived in what follows will be suggestible and interesting enough to deserve their examination.
13#
發(fā)表于 2025-3-23 21:59:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:11:32 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:40 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:58 | 只看該作者
17#
發(fā)表于 2025-3-24 13:36:29 | 只看該作者
https://doi.org/10.1057/9780230287624We showed in section 9 how the RSPT allows one to obtain the energy and the wave function corrections via the resolution of some differential equations. Here we present a method that combines HR and PT and has proven to be extremely powerful when it is applied to simple models.
18#
發(fā)表于 2025-3-24 18:18:38 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:16 | 只看該作者
https://doi.org/10.1007/978-3-319-76696-6We have deduced the HT for some GBC. The Imposition of limiting conditions for A and B gives some particular BC, one of which will be discussed in this Chapter.
20#
發(fā)表于 2025-3-25 03:12:46 | 只看該作者
Hypervirial Theorems and the Variational TheoremIn Chapter II we have dealt with one of the two most important methods that allow one to get approximations for the solutions of the Schr?dinger equation, i.e. PT. The other relevant method is the variational approx.mation, which will be discussed briefly in this section.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延安市| 拜城县| 抚州市| 平顶山市| 建瓯市| 繁昌县| 阜宁县| 侯马市| 太保市| 武隆县| 呼玛县| 洛浦县| 福州市| 喀什市| 长岭县| 沙洋县| 道孚县| 衡水市| 泰州市| 抚顺市| 浦北县| 安康市| 万盛区| 从江县| 定日县| 眉山市| 百色市| 盖州市| 武功县| 兴文县| 崇明县| 永和县| 延边| 九龙县| 漠河县| 任丘市| 黄陵县| 泰来县| 砚山县| 乐安县| 荔波县|