找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypervirial Theorems; F. M. Fernández,E. A. Castro Book 1987 Springer-Verlag Berlin Heidelberg 1987 Hamiltonian operator.Schr?dinger equat

[復(fù)制鏈接]
樓主: 女孩
11#
發(fā)表于 2025-3-23 13:46:05 | 只看該作者
12#
發(fā)表于 2025-3-23 17:41:17 | 只看該作者
Hypervirial Theorems for Finite 1D Systems. Von Neumann Boundary Conditionsparison there have not been reported in the current literature. However, some of the next theoretical results to be derived in what follows will be suggestible and interesting enough to deserve their examination.
13#
發(fā)表于 2025-3-23 21:59:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:11:32 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:40 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:58 | 只看該作者
17#
發(fā)表于 2025-3-24 13:36:29 | 只看該作者
https://doi.org/10.1057/9780230287624We showed in section 9 how the RSPT allows one to obtain the energy and the wave function corrections via the resolution of some differential equations. Here we present a method that combines HR and PT and has proven to be extremely powerful when it is applied to simple models.
18#
發(fā)表于 2025-3-24 18:18:38 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:16 | 只看該作者
https://doi.org/10.1007/978-3-319-76696-6We have deduced the HT for some GBC. The Imposition of limiting conditions for A and B gives some particular BC, one of which will be discussed in this Chapter.
20#
發(fā)表于 2025-3-25 03:12:46 | 只看該作者
Hypervirial Theorems and the Variational TheoremIn Chapter II we have dealt with one of the two most important methods that allow one to get approximations for the solutions of the Schr?dinger equation, i.e. PT. The other relevant method is the variational approx.mation, which will be discussed briefly in this section.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定襄县| 信宜市| 仪征市| 得荣县| 曲沃县| 天祝| 汉阴县| 永嘉县| 乌兰县| 秭归县| 沈阳市| 车致| 罗源县| 南雄市| 周宁县| 固原市| 雷波县| 澎湖县| 玉田县| 固阳县| 桐柏县| 吴桥县| 阿坝| 丰原市| 莱西市| 广东省| 英吉沙县| 桃江县| 永定县| 利津县| 建阳市| 集贤县| 古交市| 乌拉特后旗| 凤城市| 左贡县| 鄂州市| 且末县| 蕲春县| 德江县| 定襄县|