找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperspherical Harmonics; Applications in Quan John Avery Book 1989 Kluwer Academic Publishers 1989 Atom.atoms.hydrogen.quantum theory.symm

[復(fù)制鏈接]
查看: 26339|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:24:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Hyperspherical Harmonics
副標(biāo)題Applications in Quan
編輯John Avery
視頻videohttp://file.papertrans.cn/431/430694/430694.mp4
叢書(shū)名稱(chēng)Reidel Texts in the Mathematical Sciences
圖書(shū)封面Titlebook: Hyperspherical Harmonics; Applications in Quan John Avery Book 1989 Kluwer Academic Publishers 1989 Atom.atoms.hydrogen.quantum theory.symm
描述where d 3 3)2 ( L x - -- i3x j3x j i i>j Thus the Gegenbauer polynomials play a role in the theory of hyper spherical harmonics which is analogous to the role played by Legendre polynomials in the familiar theory of 3-dimensional spherical harmonics; and when d = 3, the Gegenbauer polynomials reduce to Legendre polynomials. The familiar sum rule, in ‘lrlhich a sum of spherical harmonics is expressed as a Legendre polynomial, also has a d-dimensional generalization, in which a sum of hyper spherical harmonics is expressed as a Gegenbauer polynomial (equation (3-27?: The hyper spherical harmonics which appear in this sum rule are eigenfunctions of the generalized angular monentum 2 operator A , chosen in such a way as to fulfil the orthonormality relation: VIe are all familiar with the fact that a plane wave can be expanded in terms of spherical Bessel functions and either Legendre polynomials or spherical harmonics in a 3-dimensional space. Similarly, one finds that a d-dimensional plane wave can be expanded in terms of HYPERSPHERICAL HARMONICS xii "hyperspherical Bessel functions" and either Gegenbauer polynomials or else hyperspherical harmonics (equations ( 4 - 27) and ( 4 - 30)
出版日期Book 1989
關(guān)鍵詞Atom; atoms; hydrogen; quantum theory; symmetry; wave
版次1
doihttps://doi.org/10.1007/978-94-009-2323-2
isbn_softcover978-94-010-7544-2
isbn_ebook978-94-009-2323-2Series ISSN 0921-9315
issn_series 0921-9315
copyrightKluwer Academic Publishers 1989
The information of publication is updating

書(shū)目名稱(chēng)Hyperspherical Harmonics影響因子(影響力)




書(shū)目名稱(chēng)Hyperspherical Harmonics影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Hyperspherical Harmonics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Hyperspherical Harmonics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Hyperspherical Harmonics被引頻次




書(shū)目名稱(chēng)Hyperspherical Harmonics被引頻次學(xué)科排名




書(shū)目名稱(chēng)Hyperspherical Harmonics年度引用




書(shū)目名稱(chēng)Hyperspherical Harmonics年度引用學(xué)科排名




書(shū)目名稱(chēng)Hyperspherical Harmonics讀者反饋




書(shū)目名稱(chēng)Hyperspherical Harmonics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:09:53 | 只看該作者
,Fock’s Treatment of Hydrogenlike Atoms and its Generalization,relationship between the 4-dimensional hyperspherical harmonics and hydrogenlike wave functions. V. Fock (1935) was able to show that such a relationship does indeed exist. His argument is as follows:
板凳
發(fā)表于 2025-3-22 03:57:32 | 只看該作者
Symmetry-Adapted Hyperspherical Harmonics,al harmonics as a basis for constructing solutions to the many-particle Schr?dinger equation, it is desirable to start with a set of harmonics which are eigenfunctions of total orbital angular momentum.
地板
發(fā)表于 2025-3-22 06:59:19 | 只看該作者
5#
發(fā)表于 2025-3-22 08:47:20 | 只看該作者
Many-Dimensional Hydrogenlike Wave Functions in Direct Space,ect space (by means of a slight modification of the method normally used to treat the hydrogen atom), and it is interesting to compare the direct-space solution with the reciprocal-space method discussed above.
6#
發(fā)表于 2025-3-22 13:57:09 | 只看該作者
7#
發(fā)表于 2025-3-22 17:30:49 | 只看該作者
Reidel Texts in the Mathematical Scienceshttp://image.papertrans.cn/h/image/430694.jpg
8#
發(fā)表于 2025-3-23 00:14:52 | 只看該作者
9#
發(fā)表于 2025-3-23 02:37:48 | 只看該作者
Harmonic Polynomials,p: . We can also define the generalized Laplacian operator Δ by . A homogeneous polynomial of order n in the coordinates x.,x.,……,x.. is defined to be a polynomial of the form: . where A, B, C, etc are constants, and
10#
發(fā)表于 2025-3-23 08:38:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁牛特旗| 芷江| 松溪县| 浏阳市| 黄骅市| 辽中县| 交城县| 杂多县| 阜阳市| 绥江县| 隆回县| 平定县| 耒阳市| 乌拉特后旗| 班玛县| 衡水市| 南雄市| 安岳县| 长岭县| 昌宁县| 甘谷县| 二连浩特市| 垫江县| 武安市| 北宁市| 象州县| 香格里拉县| 延川县| 邳州市| 建始县| 淳化县| 和平区| 洛阳市| 武威市| 恩施市| 炎陵县| 阳朔县| 林芝县| 湘西| 温泉县| 普洱|